The Present and Future Dementia Burden in China: Kinship-Based Projections and Global Comparisons

3 Abstract

1

2

China has the largest number of patients with dementia in the world, and the rate of growth 4 is expected to escalate further as the population ages. The majority of dementia patients rely 5 on their families for care and assistance. Using demographic models of kinship, we provide 6 quantitative estimates of the burden of dementia, from 1990 up to 2050, by illustrating the num-7 ber of kin accessible to dementia patients, the dementia prevalence among kinship networks, 8 and the dependency ratio of kin with dementia to working-age kin without dementia. We then 9 compare the estimates of dementia burden across 194 countries and territories, accounting for 10 historical trends in, and future projections of, mortality, fertility, and dementia prevalence. Our 11 findings suggest that, unlike other aging societies, China's aging crisis is exacerbated by the 12 fact that, in addition to the alarming rise in the number of older adults in need of care, the num-13 ber of potential family caregivers is also dropping at an unprecedented pace. The increase in 14 dementia dependency ratio is expected to exceed the increases in most other countries across 15 East Asia, Western Europe, and the United States. These findings have important implications 16 for understanding the evolution of care networks for older adults in China over time and from a 17 cross-country comparative perspective. 18

Introduction

Alzheimer's disease and related dementias (hereafter referred to as dementia) constitute an enormous challenge for patients, their caregivers and family members, and society as a whole. At
a population level, numerous studies have documented the causes and consequences of dementia, its variation across time and place, and its growing impact on the economy and healthcare
systems (Baumgart et al. 2015; Nichols et al. 2022; Pedroza et al. 2022). Dementia profoundly
changes the lives of patients and those of their families and relatives (Schulz and Martire 2004).
Those effects depend, among other things, on the structure of kinship networks: the numbers,
age distributions, and social roles of the relatives of a person with dementia.

Following the framework developed by Freedman et al. (2024), we study how demographic 10 transitions affect the dynamics of kinship structure and how structural changes in kinship net-11 works influence dementia caregiving. Specifically, we estimate the dementia prevalence and the 12 availability of potential caregivers for an *average* individual in the historical past and projecting 13 them into the future. Our primary focus is on China, and we then contextualize the China case 14 through a global comparison. China has the largest number of dementia patients in the world, 15 and this number is expected to grow rapidly in the coming years due to the unprecedented pace 16 of population aging. The number of those living with dementia has increased over fourfold in 17 the past three decades, from 3.68 million in 1990 to 15.33 million in 2019, and this number is 18 expected to triple to 45.54 million in 2050 (Nichols et al. 2022). While a significant amount 19 of research has documented the increased rate of dementia cases and the associated economic 20 costs at the national level (Chan et al. 2013; Jia et al. 2020; Nichols et al. 2019; Sohn 2023), the 21 familial implications of dementia in kinship networks have yet to be fully explored. 22

²³ Of particular importance is the number of potential family caregivers available to individ-²⁴ uals with dementia, as well as the number and relations of one's family members who may

potentially experience dementia throughout their lifetime. Thus, the burden of dementia (and many other diseases) in China, and in rapidly aging populations worldwide, is fundamentally a kinship problem. The kinship network determines the number of potential family caregivers, 3 and how many families and relatives are affected by the occurrence of dementia among their 4 kin. For example, an individual may, in young adulthood, have a grandmother with dementia, 5 have a parent with dementia in middle age, and have a spouse or a sibling with dementia in their 6 own older age. This age pattern may vary across population subgroups stratified by kin type, 7 gender, race, socioeconomic status, and place of residence, and it will likely have significant 8 consequences for social inequality (Alburez-Gutierrez et al. 2022; Chung and Hepburn 2018; 9 Feng, Song, and Caswell 2024; Friedman, Freedman, and Patterson 2023; Jiang 1995; Song 10 and Caswell 2022; Verdery and Margolis 2017; Zhou, Verdery, and Margolis 2019). While the 11 availability of relatives is not the sole determinant of the provision of care (which also depends 12 on the health care system, the costs and access to institutional care facilities, and the cultural 13 norms of family responsibilities) all those factors must operate within the context of the kinship 14 network. That network is crucial for both the care needs of older adults and the support of 15 caregivers, as consistently emphasized in previous demographic analyses (Cheng et al. 2013; 16 Cleary et al. 2022; Freedman et al. 2024; Reyes, Schoeni, and Freedman 2021). 17

The expected kinship network of a focal individual is an outcome of the mortality and fertility schedules to which the population is subject. The recent development of kinship models allows us to analyze these demographic trends and predict how kinship structures might evolve (Caswell 2019; Caswell and Song 2021). We use the time-varying version of this kinship model to project kinship structure based on observed and projected changes in mortality and fertility schedules from 1950 to 2050. China's rapidly changing demography makes this time-varying approach particularly useful (Wang 2011; Peng 2011).

²⁵ By applying the age-specific dementia prevalence rates to the age distributions of various kin

types, we calculate the burden of dementia care for individuals. This burden varies depending
on a person's age, their kin's ages, and their relatedness to different kin types. In general, older
cohorts will face a greater burden than younger ones. We introduce an index called the dementia
dependency ratio (DDR), which calculates the ratio of the number of kin with dementia to
the number of kin without dementia who are potential caregivers. The DDR is an individual
property. To evaluate the burden of dementia at the population level, we average the age-specific
DDR over the age distribution of the population. After computing results for China, we compare
the index across a wide range of countries.

Our results show that China will experience among the fastest-growing dementia burdens in 9 the world in the next three decades. In 2050, China's age-weighted DDR is projected to rise to 10 approximately 18 times its 1990 level, marking one of the most rapid increases ever recorded, 11 surpassed only by Singapore's expected climb of roughly 24 times. This trend is largely driven 12 by rising numbers of dementia cases and shrinking kinship networks. Given China's immense 13 population size and its relatively underdeveloped public health support system, the challenges 14 faced by China will be substantially more formidable than those of many other countries. The 15 results also underscore the need for future research to redirect its focus from merely the total 16 count of dementia cases to a more comprehensive assessment of dementia burden from a demo-17 graphic perspective. The kinship approach offers new insights into the economic and healthcare 18 impacts of dementia in a rapidly aging context. 19

20 Background

²¹ Population Aging and Dementia in China

²² China's population is aging at an unprecedented rate. Its three-and-a-half decade long history of ²³ the One-Child Policy, along with its remarkable economic take-off following the 1978 economic ²⁴ reforms, has led to a sustained fertility decline and a rapid increase in life expectancy (Cai

and Feng 2021; Chen and Liu 2009; Wang 2011). This ongoing demographic transition will eventually turn China's population pyramid upside-down. Even assuming, against the trend, a gradual and moderate recovery of fertility, the proportion of the population aged 65 years 3 and above is expected to increase from 191 million in 2020 to 395 million in 2050, eventually 4 accounting for 30.1% of the total population (United Nation 2022). This accelerated aging of 5 the population will lead to substantial pressures on the fiscal capacity and the social welfare 6 system in China. Cai, Wang, and Shen (2018) estimated that maintaining an average social 7 welfare generosity at the 2014 level, public health spending will more than double and pension 8 spending will more than triple from 2015 to 2050. Assuming that China manages to maintain its 9 economy at the 2020 level, the spending on public health and pension alone would consume as 10 much as 82.8% of the government revenue by 2050. The impact that the COVID-19 pandemic 11 has had on China's birth rate and economy would only precipitate the tipping point of the 12 potential fiscal crisis. 13

The increasing prevalence of dementia is one of the greatest challenges facing China's ag-14 ing population. China has the largest population of dementia patients (Jia et al. 2020), with 15 many of them undiagnosed (Lang et al. 2017), and this number is expected to climb as the pop-16 ulation ages. In 2017, dementia became the fifth leading cause of death in China, following 17 stroke, ischemic heart disease, chronic obstructive pulmonary disease, and lung cancer (Zhou 18 et al. 2019). There is no effective cure for dementia, and sufferers eventually require assistance 19 as the disease progresses. The disease thus poses a heavy economic and healthcare burden 20 on patients and their families. A 2015 survey of 81 representative hospitals, nursing homes, 21 and care facilities across 30 provinces in China reported an average annual cost of dementia 22 care per patient of \$19,144.36, amounting to a national total of \$167.74 billion annually (Jia et 23 al. 2018). Indirect costs, such as financial loss sustained by patients themselves or their informal 24 caregivers account for 51.9% of the total cost, while the direct medical costs (such as medica-25

tion and hospitalization) and non-medical costs (such as costs of transportation and healthcare
 equipment) account for 32.5% and 15.6%, respectively.

As the demand for dementia care rises, the traditional family structures that have long sup-3 ported care for older adults in China are also undergoing significant changes. Despite the long 4 history of preference for large families and intergenerational co-residence in China, the average 5 household size has shrunk from 4.41 in 1982 to 3.44 in 2000 and 2.62 in 2020 (China National 6 Bureau of Statistics 2021). Moreover, with a total fertility rate of 1.3 in 2020, China now has 7 one of the lowest fertility rates, similar to its East Asian neighbors (China National Bureau of 8 Statistics 2021). The three-and-a-half-decade-long strict One-Child Policy and the changing 9 fertility preferences have significantly altered the kinship network (Wang, Cai, and Gu 2013; 10 Wang, Gu, and Cai 2016). Scholars have long warned that the One-Child Policy would signif-11 icantly weaken family and kin structures in Chinese families, leading to the disappearance of 12 many kin ties for the most affected generations (Bongaarts and Greenhalgh 1985). For example, 13 an only child has no siblings, and the children of two only-child parents have no aunts or uncles. 14 Additionally, a significant number of parents may be left without a surviving child in old age if 15 their only child passes away prematurely. 16

These demographic shifts have profound implications for the future of caregiving in China. 17 Microsimulation studies and formal demographic models have predicted an unavoidable decline 18 in both family size and kin availability(Hammel et al. 1991; Jiang 1995; Verdery 2019; Yang 19 1992). Verdery (2019) shows that China has reached an era of peak family, in which the number 20 of extended family members remains high but is projected to drop in the coming years. By the 21 year 2050, two-fifths of the population under 50 will be only children. The kinless population, 22 defined as those without spouses or children, will reach around 25 million (Verdery 2019). 23 Moreover, massive rural-to-urban migration has split families, as many adult children have 24 migrated to metropolitan regions for better opportunities, leaving their older parents behind in 25

rural villages (Liang 2016; Lin and Tang 2023; Wang and Mason 2007). The percentage of
individuals over 65 living alone is expected to increase to 14% in rural areas and 11% in urban
areas in 2050 (Zeng et al. 2008). Overall, the number of dementia cases is expected to rise due
to population aging, at the same time that the number of available family caregivers, particularly
those who are not in old age themselves, decreases.

6 The Demography of Dementia Caregiving

Family plays a key role in caring for older adults worldwide, especially those with dementia (Jia 7 et al. 2020; Livingston et al. 2017; Wang et al. 2019). According to a large-scale survey from 8 China, about 84.9% of dementia patients were cared for by family members, 8.3% lived alone, 9 4.9% received care from hired nannies, and only 2% were receiving formal care in nursing 10 homes or hospitals(Jia et al. 2016). Several factors contribute to the low utilization of formal 11 care in China. First, formal care provided by nursing homes or hospitals is often not covered 12 by medical insurance, making it financially inaccessible for many families (Wang, Cheung, and 13 Leung 2019). Second, dementia care services are often inadequate and fragmented. While home 14 care in developed urban areas is supplemented by community-based services, such support is 15 scarce in rural and underdeveloped regions, further restricting access to formal care (Quail et 16 al. 2020). Furthermore, cultural norms rooted in filial piety also discourage families from using 17 nursing homes, as it is seen as a departure from traditional caregiving (Chang, Schneider, and 18 Sessanna 2011). These intertwined factors collectively contribute to the limited use of formal 19 care services and the enduring significance of family care within kinship networks in the context 20 of dementia care in China. 21

Most people with dementia receive informal care at home primarily from their spouses and children (Wang et al. 2019). Using the China Health and Retirement Longitudinal Study (CHARLS), Hu and Ma (2018) found that among those over 60 receiving informal care, 41.7%

were cared for by a spouse only, and 27.0% by children only. For those who were never married, divorced, separated, or widowed, 70.9% received care exclusively from children (Hu and Ma 2018). Caregiving expectations also remain strong even for those who do not currently require 3 care. Among the general population of older adults, 60.3% expect long-term support from 4 their children when needed, nearly double the rate in the U.S (Cheng 2017). Extensive research 5 from various contexts highlights that dementia caregiving places a significant strain on families, 6 leading to physical, psychological, and emotional stress for caregivers (Brodaty and Donkin 7 2009; Chan 2011; Freedman et al. 2022; Ory et al. 1999; Patterson et al. 2023). This challenge 8 is especially pronounced for caregivers in low- and middle-income countries like China, where 9 support systems, as well as knowledge and skills related to dementia care, are limited (Chan 10 2011; Wang et al. 2019). However, there is relatively little knowledge about the prevalence of 11 dementia within kinship networks from a caregiver perspective, or the expected probability of 12 having a family member with dementia based on an individual's age or other socio-demographic 13 characteristics-information that is crucial for anticipating caregiving needs, guiding public 14 health planning, and informing social policies to support family caregivers. 15

Although extended family members are not the primary caregivers for individuals with de-16 mentia, their role cannot be overlooked (Furstenberg 2020; Furstenberg et al. 2020). They often 17 serve as important substitutes, stepping in when primary caregivers are unavailable or during 18 emergencies (Reed et al. 2023; Sun 2014). According to CHARLS, 6.4% of old adults receiv-19 ing informal care were cared for exclusively by relatives other than a spouse or children, while 20 12.3% received care from a combination of other relatives along with a spouse or children. In 21 the absence of children or a spouse, extended family members can take on the primary caregiv-22 ing role. Among single older adults who received informal care, 29.1% were cared for by other 23 relatives (Hu and Ma 2018). The anticipated importance of extended family members grows 24 as the rates of childlessness, unmarried individuals, and domestic and international migration 25

continue to rise (Sun 2014; Verdery 2019; Zhou, Verdery, and Margolis 2019). Furstenberg
(2020) argues that kinship has been a "neglected topic" in recent decades, partly because of the
lack of availability of data on patterns and the frequency of contact and exchanges among kin.

In this study, we address the question of how changing kinship networks and dementia 4 prevalence combine to reshape the dementia burden landscape in China. We calculate both the 5 expected burden experienced by an *average* individual and the potential availability of family 6 caregivers. Our analyses span both past trends and future projections and consider both primary 7 and extended kin. China presents a compelling case not only due to its large and rapidly growing 8 population of dementia patients but also because of the rapid demographic transitions resulting 9 from family planning policies and economic development, which have fundamentally reshaped 10 its kinship structure. We then situate China within a global context, demonstrating how its 11 unique demographic changes have created a significant gap in dementia care demands. Before 12 presenting our results in detail, we outline our analytic approach in the next section. 13

¹⁴ Projecting the Kinship Network and the Dementia Burden

Changes in kinship structures impact caregiving arrangements and the well-being of older adults 15 (Freedman et al. 2024; Murphy 2010; Schulz et al. 2016; Wachter 1997; Wolf 1994). These 16 shifts in family dynamics play a pivotal role in determining how older adults receive care and 17 support as they age. To analyze the dementia burden, formal demographic models offer a valu-18 able framework for quantifying the implications of these changes in terms of kinship networks. 19 These models leverage data on mortality, fertility, and other demographic rates to calculate and 20 understand the dynamics of kinship. Below we describe the analytical framework that charac-21 terizes the evolving landscape of caregiving for older adults. 22

1 The Kinship Network of Individuals

Notation The following notation is used throughout this paper. Matrices are denoted by upper case bold characters (e.g., U) and vectors by lower case bold characters (e.g., a). Vectors are column vectors by default; \mathbf{x}^{T} is the transpose of \mathbf{x} . The bold vector 1 is a vector of ones, and the matrix I is the identity matrix. When necessary, subscripts are used to denote the size of a vector or matrix; e.g., \mathbf{I}_{ω} is an identity matrix of size $\omega \times \omega$. The notation $||\mathbf{x}||$ denotes the 1-norm of \mathbf{x} , that is, the sum of the absolute values of the entries of \mathbf{x} .

The matrix kinship model on which we rely has been presented in a series of papers, each of which extends the demographic processes that can be incorporated (Caswell 2019, 2020, 2022; Caswell and Song 2021; Caswell, Margolis, and Verdery 2023). Because we are interested in *changes* in kinship, beginning in the past and continuing into the (projected) future, our analysis is based on the version of the model that incorporates time-varying demographic rates.

The model describes the kinship network of an individual, referred to as Focal. The model treats each type of kin as a population. As Focal ages, her kinship network develops through the births and deaths of each type of kin. Our one-sex definitions of kin include mother, grandmother, great-grandmother, daughter, granddaughter, great-granddaughter, sisters, cousins, aunts, and nieces.

The age structure of each type of kin is projected using the matrix formulation of rates of survival and fertility. The population of any type of kin is subsidized; that is, new members of the population of one type of kin come not from the reproduction of those kin, but from the reproduction of some other type of kin (e.g., new sisters of Focal arise not from the reproduction of her current sisters, but from the reproduction of her mother).

Let $\mathbf{k}(x, t)$ denote the age distribution for a generic type of kin:

$$\mathbf{k}(x,t) =$$
kin of type k at age x of Focal at time t (1)

¹ The kin vector is projected from time t to t + 1 by a survival matrix U_t and a fertility matrix ² F_t , both of dimensions $\omega \times \omega$ (i.e., the number of age groups). The survival and fertility rates ³ may vary with time. For example with three age classes, so that $\omega = 3$, we have

$$\mathbf{U}_{t} = \begin{pmatrix} 0 & 0 & 0 \\ p_{1t} & 0 & 0 \\ 0 & p_{2t} & [p_{3t}] \end{pmatrix} \qquad \mathbf{F}_{t} = \begin{pmatrix} f_{1t} & f_{2t} & f_{3t} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
(2)

⁴ where p_{it} is the survival probability and f_{it} the fertility rate of age class i at time t.¹

The kin at age x + 1 of Focal at time t + 1 include the survivors of the kin of age x at time t.
These survivors are obtained by multiplying the age distribution k(x, t) by the survival matrix
U_t. New individuals are produced according to a recruitment vector β(x, t) such that

$$\mathbf{k}(x+1,t+1) = \mathbf{U}_t \mathbf{k}(x,t) + \boldsymbol{\beta}(x,t) \qquad x = 0, \dots, \omega \quad t = 0, \dots, T$$
 (3)

⁸ The recruitment vector $\beta(x, t)$ has one of two forms. For some kin (e.g., older sisters of Focal),

⁹ there is no recruitment of new members after the birth of Focal, so that

$$\boldsymbol{\beta}(x,t) = \mathbf{0}.\tag{4}$$

¹⁰ For some types of kin,

$$\boldsymbol{\beta}(x,t) = \mathbf{F}_t \mathbf{k}^*(x,t) \tag{5}$$

which applies the fertility at time t to the age structure vector of the kin k^* that provides the subsidy. For example, younger sisters (n) of Focal are produced by reproduction of the mothers (d) of Focal, so

$$\mathbf{n}(x+1,t+1) = \mathbf{U}_t \mathbf{n}(x,t) + \mathbf{F}_t \mathbf{d}(x,t)$$
(6)

The model must specify a set of two boundary conditions. One gives the kinship network of Focal, over all ages, at the earliest time point in the projection. The other specifies the kinship network of Focal at her birth over all time points. For some kin the latter boundary condition is

^{1.} The optional (ω, ω) cell in \mathbf{U}_t describes an open final age interval.

zero (e.g., Focal can have no children at birth), for others, it is not (e.g., Focal may have older
sisters at birth). For details on these conditions, see Caswell and Song (2021).

Selection of Kin Types. Defining what constitutes a kinship network is challenging due to the 3 growing diversity of family structures and cultural variations (Furstenberg 2020; Goody 1996). While the matrix kinship model can be extended to include any chosen set of kin types, we 5 limit our analysis to those blood-related ties that are both the most common and most likely to 6 be present for the focal individual during her lifetime. This includes first-degree kin (children 7 and parents), second-degree kin (grandchildren, grandparents, and siblings), and third-degree 8 kin (great-grandchildren, great-grandparents, aunts, uncles, nieces, and nephews). As will be-9 come clearer in the results section, we present the kin structure and dementia prevalence within 10 kinship networks by kin type. In constructing the dementia dependency ratio, we provide two 11 methods of aggregation: one aggregating all the common kin types mentioned above, and an-12 other aggregating only parents and their children (including the focal individual). 13

Approximating Male and Female Kin. The vector $\mathbf{k}(x,t)$ gives the age structure of female 14 kin in maternal lines of descent. To fully compute the age distributions of both male and female 15 kin through all lines of descent, would require a two-sex model incorporating both male and 16 female mortality and fertility schedules (Caswell 2022). However, approximate results for both 17 sexes can be obtained by treating males and females as identical, and multiplying the kin vectors 18 $\mathbf{k}(x,t)$ by a set of factors suggested by Goodman, Keyfitz, and Pullum (1974), called the 'GKP 19 factors' by Caswell (2022). In this approximation, daughters are multiplied by 2 to give childen, 20 granddaughters multiplied by 4 to give grandchildren, mothers multiplied by 2 to give parents, 21 grandmothers multiplied by 4 to give grandparents, sisters multiplied by 2 to give siblings, 22 and so on. In the absence of full sets of male and female vital rates, the GKP factors offer 23 the best alternative for approximating the full kin counts. Prior studies have shown that the 24

GKP factor approximation is largely comparable to the two-sex model or data from population
registers. However, relying solely on female vital rates for kin population estimates can lead
to overestimation due to females' relatively lower mortality rates (Alburez-Gutierrez, Williams,
and Caswell 2023; Caswell 2022; Song and Caswell 2022).

5 The Dementia Dependency Ratio of an Individual

As an individual, Focal has kin both with and without dementia. The numbers of kin in these
categories will differ among kin types because the age distributions differ among kin types, and
change as Focal ages.

The number of kin with dementia is calculated from the age-specific prevalence of dementia in the population ². Let Ψ be a vector containing age-specific prevalences. The expected number of kin with dementia at age x of Focal at time t is

$$y(x,t) = \Psi^{\mathsf{T}}(t) \,\mathbf{k}(x,t). \tag{7}$$

This calculation can be modified to give the number of kin with dementia within a specified age range (e.g., kin in the working ages from 16 to 64) by setting all elements of Ψ except those corresponding to those ages to zero.

From the numbers of kin with dementia, we calculate the probability that Focal, at age x and time t, has at least one relative with dementia, using a Poisson approximation ³, as in Song and Mare (2019) and Song, Campbell, and Lee (2015). If the expected number of kin with dementia at time t is y(t), under the Poisson assumption the probability of having at least one such kin is

$P(\text{at least one kin with dementia}) = 1 - e^{-y(t)}.$ (8)

^{2.} Since, in this study, the male kin population is approximated based on the female kin population, we apply the average of female and male dementia prevalence rates to the sum of the female and male kin population to obtain the number of kin with dementia.

^{3.} The Poisson approximation assumes that having kin with dementia is rare and independent, but we acknowledge that this may underestimate the probability, as dementia can be genetic and not fully independent within a kinship network.

Focal has kin both with and without dementia, and the burden of dementia experienced by Focal is measured by a dependency ratio. The familiar demographic dependency ratio is calculated as the ratio of those not considered part of the labor force (younger than 15 or older than 65) relative to those considered to be part of the labor force (16–64) and thus supporting the dependant ages.

⁶ Here we calculate a corresponding dementia dependency ratio for each type of kin:

$$DDR(x,t) = \frac{\text{number with dementia}}{\text{number without dementia aged 16-64}} = \frac{y(x,t)}{(1 - \Psi_{16-64})^{\mathsf{T}} \mathbf{k}(x,t)}.$$
 (9)

⁷ The dementia dependency ratio can be interpreted as a measure of the burden that kin with
⁸ dementia place on kin without dementia in working ages⁴.

⁹ In our main results, we include all common kin types introduced in the previous section. ¹⁰ We carried out an additional analysis that limits the types of kin to children and parents. The ¹¹ results show a similar significant rise of DDR in China when compared to other countries as ¹² those presented in Figure 6. We present these results in online Appendix Figures S2 and S3.

The Dementia Burden of a Population

The kinship network and the dementia dependency ratio are expected properties of a Focal individual at a given age x. A population is a collection of such individuals, of different ages, with an age structure given by, say, $\mathbf{n}(t)$.

The population dependency ratio is obtained by averaging the age-specific values over the
 age distribution.

¹⁹ Then the age-weighted, population dependency ratio is

$$DDR_{pop}(t) = \frac{\sum_{x} n_x(t) DDR(x, t)}{\|n(t)\|}.$$
(10)

^{4.} Note that alternative measures of dependency can easily be imagined and are easily calculated. For example, Chung and Alexander (2019) proposed a similar Kin Dependency Ratio (KDR) index, which is defined as the ratio of the number of plausibly dependent kin at Focal age x to the number of plausibly non-dependent kin at Focal age x. Also note that this index can be calculated for any type of kin, or any combination of types of kin, as desired.

This quantity is the expected dementia dependency ratio of an individual selected at random
 from the population.

The population ratio $DDR_{pop}(t)$ gives the expected dementia burden of the population at time t and permits comparison across populations of different countries and at different times. As is done with standardized mortality calculations, a standard age distribution could be used for n(t) across all countries. We do not explore this here.

7 Data Sources and Estimation

Our analyses are based on mortality and fertility schedules from the 2022 Revision of the United 8 Nations World Population Prospects (UNWPP) (United Nation 2022), starting in the year 1950 9 and continuing from the year 2021 to 2050 as a projection of future rates. The time-zero bound-10 ary condition k(x, 0) was obtained by a time-invariant calculation using the rates of 1950 and 11 the distribution of ages at maternity in 1950 based on the UN's estimate of births by age of the 12 mother. The age-zero boundary condition specifies $\mathbf{k}(0,t)$ for each year; it was calculated from 13 the appropriate kin at time t-1 (see Table 1 of Caswell and Song 2021). Thus, when we report 14 kinship results for a particular year (e.g., 1990), the results reflect the changing mortality and 15 fertility schedules in China from 1950 up to that year. 16

We draw on period fertility and mortality estimates for China and 194 other countries from 17 the year 1950 to 2021 documented in the 2022 UNWPP. The 2022 UNWPP provides age-18 specific fertility and mortality estimates for each single-year age group. For projected estimates 19 up to the year 2050, we choose the medium-variant projections of fertility and mortality rates 20 provided by the UN. The medium-variant projection refers to the median of several thousand 21 distinct trajectories of each demographic component derived using the probabilistic model that 22 takes into account the historical variability in fertility and mortality of each country (United 23 Nation 2022). According to the medium fertility scenario, China's fertility is expected to re-24

bound gradually and moderately to 1.4 from 2022 to 2050 after reaching a historical low of 1.2
in 2021.

To estimate the prevalence of dementia, we draw on data from the 2019 Global Burden of 3 Disease (GBD 2019), which provide forecasted estimates of the prevalence rate of Alzheimer's 4 disease and other types of dementia by age, sex, and year. The Global Burden of Disease uses a 5 Bayesian meta-regression model to estimate age- and sex-specific prevalence rates and provides 6 the mean value out of 1,000 draws from their model⁵. The Bayesian models provide a meta-7 analysis of 43 published studies on dementia in China. These data can be downloaded through 8 GBD's Data Input Sources Tool. We did not use the public version of the GBD data as the data 9 exclude dementia induced by other clinical disorders, including Down syndrome, Parkinson's 10 disease, clinical stroke, and traumatic brain injury. Instead, we use updated dementia prevalence 11 rates provided in Nichols et al. (Nichols et al. 2022) that include all forms of dementia. We use 12 the mean-value dementia prevalence estimates throughout our analyses. Because the demen-13 tia prevalence rates were estimated in the five-year age group, we used linear interpolation to 14 impute single-year age-specific prevalence rates. Table S1 in the online appendix summarizes 15 sources, data types, time coverage, and age ranges for data used in our analyses. 16

We carried out our calculations using the R package DemoKin (Williams et al. 2022). This package implements the calculations developed in Caswell (2019, 2020, 2022) and Caswell and Song (2021), which are presented in those papers as MATLAB programs.

^{5.} Four risk factors for dementia—high body mass index, high fasting plasma glucose, smoking, and years of education—have been included in the dementia projection (Nichols et al. 2022).

Results

² Changing Kinship in China

³ Compared to 1990, Chinese people in 2019 are expected to have fewer grandchildren and great⁴ grandchildren but are more likely to have living parents, grandparents, and great-grandparents.
⁵ For instance, the average number of children for Focal aged 30 has decreased from 1.78 in 1990
⁶ to 1.20 in 2019 and is projected to decrease to 0.58 by 2050. In contrast, the estimated average
⁷ number of grandparents for Focal age 30 has risen from 0.69 in 1990, to 1.70 in 2019, and is
⁸ expected to reach 2.33 by 2050.

9

*** Figure 1 About Here ***

However, the change in the number of kin between 1990, 2019, and 2050 does not follow 10 a monotonic trend for certain types of kin, especially among older individuals. For example, 11 Focal at 80 years old is expected to have 3.71 children in 1990, 3.96 children in 2019, and 1.79 12 children in 2050. This nonlinear pattern largely results from the rise and fall of fertility and 13 mortality rates since the 1950s: the immediate fertility drop following the Great Leap Forward 14 Famine (1959–1961), the baby boomers born from 1962 to 1964, the subsequent long-running 15 fertility decline following the Later-Longer-Fewer family planning campaign in the 1970s, and 16 the more stringent One-Child Policy between 1980 and 2016 (Cai 2010, 2008; Feeney and 17 Feng 1993; Peng 1987; Whyte, Feng, and Cai 2015). Nevertheless, as Focal at the age of 40 18 in 2019 reaches 80, they will have fewer accessible kin of various types, such as children or 19 grandchildren, than Focal at age 80 in 2019. This pattern reflects the ongoing decline in fertility 20 rates, with generations born earlier experiencing higher levels of fertility. 21

These estimates of kinship structure are important as they reveal not only the number of specific kin types that Focal is expected to have across various life stages during different periods but also the maximum number of available kin of specific types that could potentially provide care when Focal develops dementia or other illnesses. We also present a table that shows the
number of kin of Focal at different ages in the online appendix Table S2. In the following section, we employ the projected dementia prevalence rates from the Global Burden of Disease
(GBD) study to estimate the prevalence of dementia in Focal's kinship network.

5 Abundance of dementia in the kinship network

Figure 2 depicts age-specific dementia prevalence rates in 1990, 2019, and 2050 estimated 6 by the Dementia Forecasting collaborators in the Global Burden of Disease Study (Nichols 7 et al. 2022). Figures 2B and 2C display the projected number of dementia cases by age of 8 Focal, as well as the total count of dementia cases for the years 1990, 2019, and 2050. The 9 sources of data are described in the Methods section and Table S1 in the online appendix. 10 Per age, dementia prevalence grew considerably between 1990 and 2019. For example, 7 out 11 of 100 people aged 80 had dementia in 1990, and this number increased to 10 out of 100 in 12 2019. The rise in dementia prevalence in China over the last three decades has been well 13 reported, reflecting increased longevity and improved diagnostic criteria (Chan et al. 2013; Jia 14 et al. 2020). Between 2019 and 2050, the projected age-specific dementia prevalence rate shows 15 only a small increase. However, the proportion of people with dementia in the population is 16 expected to increase dramatically by 2050, because the population as a whole is expected to be 17 much older. 18

19

*** Figure 2 About Here ***

Combining the prevalence and kin age distributions we obtain the expected number of kin with dementia. Figure 3A presents the expected number of kin with dementia as a function of Focal's age in 1990, 2019, and 2050. These results suggest that the number of kin with dementia has increased substantially between 1990 and 2019 and is expected to further increase over the next three decades. Over time, individuals would have more grandparents and greatgrandparents with dementia at younger ages, parents and aunts/uncles with dementia at middle
age, and children, siblings, nieces/nephews, and cousins with dementia at older ages. As individuals live longer and have older kin, they would not only experience dementia themselves but
also become subject to the ripple effect of dementia within their kinship networks.

The probability of having at least one relative of each type with dementia, as a function of 6 the age of Focal, is shown in Figure 3B. Nearly half of individuals born in 2050 can expect 7 to have at least one great-grandparent with dementia at birth. Among individuals at age 30 in 8 2050, 25% are expected to have at least one grandparent with dementia; among those at age 9 60, 16% will have parents with dementia; and among those aged 75, 15% of them will have 10 siblings with dementia, 23% will have aunts and uncles with dementia, and more than 65% will 11 be expected to have cousins with dementia. Given the elevated prevalence of dementia within 12 kinship networks, it is highly possible that the majority of the population will experience its 13 direct or indirect consequences at some point in their lives. 14

15

*** Figure 3 About Here ***

The increase in the number of kin with dementia is a result of both the rising prevalence 16 of dementia and population aging. To clarify the relative importance of these two factors over 17 time, we use the Kitagawa method (1955) to decompose the change in the number of kin with 18 dementia into contributions from changing prevalences (rate effect) and changing age distribu-19 tions. Figures 4A and 4B present the decomposition results for different types of kin for two 20 time periods, 1990–2019 and 2019–2050. The overall size of the colored region in each figure 21 represents the change in the number of kin with dementia between two anchoring years. The 22 red region indicates the portion of change due to shifts in the age distribution of a certain type 23 of kin, while the blue region indicates the portion of change attributable to changes in the preva-24

lence of dementia within that specific type of kin. Between 1990 and 2019, the rate and the age
effects jointly determine the increase in kin with dementia as each plot appears as a combination of red and blue regions. Between 2019 and 2050, the age effect is expected to dominate the
increase in kin with dementia, with the red regions accounting for nearly all of the changes observed. The dominant age effect suggests that, despite a mild projected increase in age-specific
dementia rates from now until 2050, the demand for dementia caregiving is expected to increase
disproportionately due to the rapidly changing kinship age structure alone.

8

*** Figure 4 About Here ***

⁹ Dementia Burden in China and Globally

The components of the Dementia Dependency Ratio DDR(x), and the DDR itself, are shown 10 in Figure 5 for the years 1990, 2019, and 2050. The age-specific DDR(x) values presented 11 in Figure 5C indicate that the DDR among the kin of Focal is higher when Focal is younger 12 than 25 and older than 60. For example, the dementia dependency ratio among the kin of an 13 individual close to retirement age at age 65 is 0.7 in 1990 and 2.4 in 2019, indicating a more 14 than threefold increase. The DDR values are expected to increase dramatically in the next three 15 decades. By 2050, the dementia dependency ratio among the kin of an individual aged 65 will 16 have more than tripled from 2.4 in 2019 to 7.3 in 2050. The dramatic increase in DDR is 17 driven by two factors: the increase in the number of kin who have dementia (Figure 5A) and 18 the decline in kinship size over time (Figure 5B). For example, the expected number of kin with 19 dementia for an individual at age 65 will increase by 43.6% (= 1.12/0.78 - 1) between 2019 and 20 2050, whereas the number of kin aged 16 to 64 without dementia will decline by 52.5% (= 1 -21 15.5/32.6). 22

*** Figure 5 About Here ***

23

The rapid increase in dementia dependency burden seen in China, as illustrated in Figure 1 5, might not be an isolated case. To gain a broader perspective, we situate China in a global 2 context. Specifically, we conduct similar DDR calculations for 194 countries worldwide. To 3 perform the analyses, we rely on two key data sources: dementia prevalence estimates from the 4 Global Burden of Disease database and demographic rates, such as age-specific fertility and 5 mortality and population age distribution, from the United Nations (Nichols et al. 2022; United 6 Nation 2022). We then develop a population-level dependency burden index called DDR_{pop} 7 using age-specific DDR weighted by the population age distribution. Results in Appendix Table 8 S3 show the population-level $DDR_{pop}(t)$ for all countries, at five time points: 1990, 2019, 2030, 9 2040, and 2050. 10

Figure 6 shows a series of heat maps, one for each year from 1990 to 2050, to visualize population-level $DDR_{pop}(t)$ across countries at each of those times. In 1990, DDR_{pop} is highest in Europe and North America. Notably, United States and Sweden had the highest value at 1.8. By contrast, China's DDR_{pop} was one of the lowest at 0.4, similar to countries such as Morocco and South Africa in the same year. Fast forwarding to 2019, the global landscape of DDR_{pop} has shifted. Japan now leads the ranking with a DDR_{pop} level of 5.8. China's DDR_{pop} increased appreciably to 1.7, similar to Ireland and Chile in that year.

The most dramatic changes in $DDR_{pop}(t)$ are projected for 2050. China's DDR_{pop} is expected to be among the highest globally, reaching a level of 7.2. This value surpasses those projected in 2050 for many well-known aging societies such as Germany (6.4) and France (5.9).

*** Figure 6 About Here ***

To better understand changes in $DDR_{pop}(t)$ during the period of 1990 to 2050, we summarize these changes in Figure 7.⁶ The figure highlights the dramatic increase that China is

^{6.} Appendix Table S3 also documents the fold change in the population-level $DDR_{pop}(t)$ between 1990 and 2019, and from 2019 to 2050.

expected to experience. By 2050, China's $DDR_{pop}(t)$ is projected to be approximately 18 times higher than it was in 1990, indicating one of the fastest growth rates globally. Only Singapore is projected to see a more dramatic rise, with a roughly 24-fold increase. However, the sheer size of China's population adds another layer of complexity to this challenge. While Singapore may experience a similar growth rate in $DDR_{pop}(t)$, the number of Chinese people with dementia will be far greater due to its massive population base. Furthermore, China's public health support system is currently underdeveloped, raising further concerns about its ability to cope with this rapidly growing demographic shift.

Although studies suggest that North Africa, Sub-Saharan Africa, and the Middle East may 9 experience the highest increases in dementia cases in the next three decades (Nichols et al. 2022), 10 many low-income countries in these areas maintain low values of $DDR_{pop}(t)$ and exhibit min-11 imal changes. For instance, in 1990, Niger had the lowest recorded $DDR_{pop}(t)$ at 0.2, and this 12 figure hardly changed by 2019, and it is projected to rise to only 0.3 by 2050. This persis-13 tently low $DDR_{pop}(t)$ in low-income countries can be attributed to high fertility rates, which 14 contribute to expansive kinship networks for individuals with dementia. However, the low val-15 ues may also result from potential underestimation of dementia prevalence within these regions 16 because very few studies have examined aging and cognitive function in low-income countries 17 due to data limitations (Kohler et al. 2023). 18

19

*** Figure 7 About Here ***

20 Discussion and Conclusion

²¹ China has the highest number of people living with dementia in the world. As China's population continues to age, dementia is expected to remain a significant social and public health concern for the foreseeable future. While the majority of older adults with dementia are cared for by family members, shrinking family size and changing kinship structures are undermining
the traditional family care arrangements. Furthermore, some recent evidence shows that the
unit cost of dementia care in China has doubled from 2000 to 2019 and is predicted to double
again within the next two decades (Pedroza et al. 2022). The compound effects of increasing
dementia cases, smaller families, and rising costs may exacerbate the impact on individuals,
families, and the wider society. With the rising demand for dementia care in China, the present
study illustrates the evolving accessibility of potential care provided by family members, who
offer an alternative care source to professional providers and healthcare institutions.

Using demographic models of kinship, we estimate kin availability and prevalence of de-9 mentia among individuals' kinship networks. We find the probability that an individual has a 10 close family member with dementia rises significantly. For example, among people aged 30, 11 the likelihood of having at least one living grandparent with dementia grew from 5% in 1990 to 12 nearly 30% in 2050, whereas among those aged 50, the likelihood of having at least one living 13 parent with dementia climbed from 3% to 11%. What has been driving this rise? Our decom-14 position analysis indicates that both increasing dementia prevalence and changes in kinship age 15 structure contribute to the trend, though their relative impacts vary over time. From 1990 to 16 2019, rising dementia prevalence and an aging kinship network jointly boosted the probabil-17 ity of having a close relative with dementia. However, from 2019 to 2050, the rapid aging of 18 kinship networks will emerge as the dominant factor. 19

Furthermore, the number of kin available to older adults for caregiving will plummet over the next three decades. Factoring in changing kinship sizes and structures, our kin-based indices of dementia dependency ratios shed more light on the impact of demographic change on the dementia caregiving demand. Our results suggest that the dementia caregiving burden in China is expected to climb 18-fold, one of the most dramatic projected changes for any country. For example, in 1990, an individual of age 80 would have had 0.4 kin with dementia (considering all types of kin and kin of different ages) and 35.1 working-age, dementia-free kin (defined as
kin aged 16 to 64 without dementia). In 2019, an 80-year-old Focal would have had 1.2 kin
with dementia and 29.9 kin who were dementia-free and could have been care providers. Looking ahead to 2050, these figures are expected to change to 2.2 kin with dementia but only 11.6
dementia-free kin⁷. Taken together, these trends suggest that even a significant breakthrough
in reducing dementia prevalence may not be sufficient to offset the growing dementia caregiving demands. As the number of affected relatives increases and the pool of potential family
caregivers shrinks, the traditional reliance on family-based care will face increasing pressure,
highlighting the need for stronger institutional support and policy interventions.

By incorporating the kin ties beyond the nuclear family, our study also joins the research 10 agenda on building the *demography of kinship* (Furstenberg 2020; Furstenberg et al. 2020) and 11 rethinking family networks and support structures, especially in an era of extended shared life-12 times among kin and heightened caregiving demands. This is particularly relevant for China, 13 where a third of families are one-child families (Cai and Feng 2021). A promising direction for 14 future research would be to examine the frequency and intensity of exchanges between distant 15 kin, such as cousins, nieces, and nephews, for the one-child generation and their parents, ex-16 ploring the extent to which kin from alternative family forms may substitute for nuclear family 17 members. 18

This study has several limitations. First, we treat the population as a homogeneous group with a single set of demographic rates and dementia prevalences, despite variations in fertility, mortality, and dementia rates by socioeconomic factors such as educational attainment, *hukou* status, and place of residence (Crimmins et al. 2018; Jiang 1995; Luo, Zhang, and Pan 2019; Ruiz et al. 2023; Zhang, Song, and Chen 2022; Zhang 2006). Furthermore, families with a his-

^{7.} It is also worth noting that because kinship models are projections of the consequences of the demographic rates conditional on these hypotheses, they are not expected to duplicate the results found from empirical censuses of kin (as noted explicitly by Goodman, Keyfitz, and Pullum (1974)). Rather, they capture the main effects of the demographic structure against which the effects of violations of these assumptions can be evaluated.

tory of dementia may have members with a higher genetic risk and share environmental factors 1 that increase dementia risk, leading to greater caregiving demands within these family networks 2 compared to others (Loy et al. 2014). These factors would lead to variations in the estimates of 3 kinship structure and dementia burden that are overlooked in the current study. In the Chinese 4 context, previous research has found that older adults with lower education and rural hukou 5 status have lower cognitive function and experience faster cognitive decline (Ruiz et al. 2023; 6 Zhang, Song, and Chen 2022). Although they may have larger kinship networks compared to 7 the urban educated population (Jiang 1995), they remain vulnerable due to limited access to 8 public support, including pensions, health insurance, and care facilities. Future research may 9 investigate the complex interaction between kinship and other social factors to identify the most 10 vulnerable, hard-to-reach groups with limited access to health care. Multistate matrix kinship 11 models (Caswell 2020) and micro-simulations (Zagheni 2015) could be promising approaches 12 for improving our analysis by capturing population heterogeneity in kinship compositions and 13 dementia rates. 14

Second, our demographic models of kinship consider only common biological kin ties, ex-15 cluding spouses, in-laws, and kin from other alternative family forms such as step-kin, adopted 16 family members, and voluntary kin. Models incorporating spouses would be a valuable addi-17 tion because they are more likely than children and other biological kin to live with the person 18 with dementia (Hu and Ma 2018) and are often better equipped to provide care due to their 19 closer emotional bond with the dementia patient (Evans and Lee 2014; Hayes, Boylstein, and 20 Zimmerman 2009). However, the impact of omitting spouses and in-laws on our estimates 21 remains unclear, as they can be both caregivers and care recipients of dementia, which may 22 balance out their overall effect on the caregiving burden. It is also worth noting that spouses 23 of dementia patients are likely to be "hidden patients" themselves, as they often face their own 24 health issues (Liu et al. 2019). In addition, caregiving is often gendered. In the Chinese context, 25

daughters-in-law are a significant source of care for older adults (Cong and Silverstein 2008), as they are traditionally expected to move into the husband's family household. However, this tradition has weakened under China's rapid demographic and social changes. Recent empiri-3 cal evidence indicates a growing involvement of daughters in caregiving (Hu 2017; Lei 2013). 4 Some studies even suggest that daughters now provide as much, if not more, support than sons 5 (Silverstein, Gans, and Yang 2006; Xie and Zhu 2009; Zeng et al. 2016). Fictive or voluntary 6 kin from alternative family forms can also play an important role, particularly for older adults 7 who lack children, spouses, or siblings, or during times when nuclear family members are un-8 available (Furstenberg et al. 2020; Reed et al. 2023; Sun 2014). Caregiving exchanges within 9 these kin-like relationships are often overlooked or underreported due to limitations in existing 10 data collection practices(Furstenberg 2020). As a result, models that exclude non-biological 11 kin may overstate the caregiving burden placed on biological relatives. Future research us-12 ing large-scale household-level microdata, in-depth qualitative interviews, or other innovative 13 data collection approaches could provide valuable insights into how family complexity shapes 14 dementia caregiving in China and beyond. 15

Third, we did not account for factors such as the social expectations, cultural significance, 16 and geographical proximity of kin ties (Lin and Tang 2023; Murphy 2008; Shanas 1973), which 17 may moderate kin relationships and caregiving dynamics. Among these factors, gender is one 18 important dimension warranting further consideration. Previous studies indicate that caregiving 19 for older adults within families is gendered, shaped not only by the caregiver's gender but also 20 by the gender of the care recipient and other available family members (Grigoryeva 2017), with 21 women disproportionately bearing more care responsibilities than men (Carr and Utz 2020; 22 Silverstein and Giarrusso 2010). The type of support provided to older parents can vary signifi-23 cantly by gender, with daughters often offering more emotional and instrumental support, while 24 sons typically focus on financial assistance (Lei 2013; Zeng et al. 2016). Furthermore, we did 25

not account for the institutional contexts in which kin ties are embedded. Studies in Europe
have shown that caregiving for older parents by children is more common in Southern and Central Europe than in Northern Europe, where public support systems are stronger (Attias-Donfut,
Ogg, and Wolff 2005; Haberkern and Szydlik 2010). This limitation affects our cross-national
comparison, as we infer the care gap based on kin availability and dementia prevalence among
kinship networks, without considering social norms, health policies, and accessibility of formal
care services.

Future research should examine whether the increasing prevalence of dementia within kin-8 ship networks will reinforce existing social inequalities or create new ones, affecting both those 9 providing care and those at risk of having kin with dementia, and how these dynamics vary 10 across institutional contexts. From a life course perspective, having grandparents or parents with 11 dementia at younger ages may temporarily disrupt an individual's work as he or she takes time 12 off or adjusts work schedules to provide care for family members. Such disruptions may even 13 lead to long-term consequences for reduced work performance, diminished career prospects, 14 and financial strain. The repercussions on labor market outcomes for individuals caring for 15 relatives with dementia is another critical, yet largely unexplored, area for future research. 16

Our findings based on demographic estimates have policy implications for national health-17 care systems and the well-being of families. Our findings based on demographic estimates have 18 policy implications for national healthcare systems and the well-being of families. Compared to 19 other aging societies, the projected increase in dementia care demands in China is both rapid and 20 large in scale. This challenge is further compounded by the country's aging kinship structure, 21 which undermines traditional family-based care. China's basic medical insurance covers some 22 dementia-related medical expenses, such as diagnostic tests, hospitalizations, and medications. 23 However, long-term care and non-hospital services are often not covered (Feng et al. 2020; 24 Jia et al. 2020; Wu et al. 2016). Furthermore, the existing programs primarily support older 25

adults with severe dementia. There are no specific subsidies or support programs for individuals experiencing mild cognitive decline or early-stage dementia (Wu et al. 2020; Ye et al. 2024). In many aging societies, such as Japan, Korea, and Germany, long-term care insurance is a 3 mandatory component of the social security system (Kang et al. 2023; Spasova et al. 2018; Sun 4 et al. 2020). While China began piloting long-term care insurance in a limited number of cities 5 in 2016, it still lacks a comprehensive nationwide system (Feng et al. 2020). To close this gap, 6 policymakers should consider making equitable access possible across the country to ensure 7 that individuals, regardless of where they live or their social background, have a fair chance to 8 benefit from the program. In addition to strengthening formal care policies, it is also urgent for 9 China to promote and expand informal caregiving networks. While the size of close kinship 10 networks has declined in recent decades, our findings suggest that a substantial number of ex-11 tended family members remain potential caregivers. Expanding caregiver subsidies to include 12 extended relatives, such as nieces and nephews, could provide much-needed support and alle-13 viate the burden on primary caregivers. This approach would also encourage a more flexible, 14 community-based caregiving model—an essential adaptation for a society where single-child 15 households become increasingly common. Although we highlight the rapid increase in China's 16 dementia caregiving burden from 1990 to 2050, the absolute scale of the dementia caregiving 17 challenge remains high in rapidly aging societies across East Asia and Europe. For example, 18 kin-based indices of dementia dependency ratios are consistently higher in Japan and Italy than 19 in China throughout the estimated years (Figure 6 and Table S3). In our analysis, we focus on 20 comparing the aggregate dementia caregiving burden across countries. Future research could 21 apply our analytical framework to other aging contexts to examine the evolving kinship struc-22 ture in detail and identify the specific ages at which caregiving demands peak across different 23 historical periods and into the future⁸. 24

^{8.} A replication package with the code for all analyses is available at XXX (Link containing author information).

References

Alburez-Gutierrez, Diego, Nicola Barban, Hal Caswell, Martin Kolk, Rachel Margolis, Emily 2 Smith-Greenaway, Xi Song, Ashton M. Verdery, and Emilio Zagheni. 2022. Kinship, De-3 mography, and Inequality: Review and Key Areas for Future Development, June. https: 4 //doi.org/10.31235/osf.io/fk7x9. 5 Alburez-Gutierrez, Diego, Iván Williams, and Hal Caswell. 2023. "Projections of human kin-6 ship for all countries." Proceedings of the National Academy of Sciences 120, no. 52 (De-7 cember): e2315722120. https://doi.org/10.1073/pnas.2315722120. 8 Attias-Donfut, Claudine, Jim Ogg, and François-Charles Wolff. 2005. "European patterns of in-9 tergenerational financial and time transfers." European Journal of Ageing 2, no. 3 (Septem-10 ber): 161–173. https://doi.org/10.1007/s10433-005-0008-7. 11 Baumgart, Matthew, Heather M. Snyder, Maria C. Carrillo, Sam Fazio, Hye Kim, and Harry 12 Johns. 2015. "Summary of the evidence on modifiable risk factors for cognitive decline 13 and dementia: A population-based perspective." Alzheimer's & Dementia: The Journal of 14 *the Alzheimer's Association* 11, no. 6 (June): 718–726. https://doi.org/10.1016/j.jalz.2015. 15 05.016. 16 Bongaarts, John, and Susan Greenhalgh. 1985. "An Alternative to the One-Child Policy in 17 China." Population and Development Review 11 (4): 585–617. https://doi.org/10.2307/ 18 1973456. 19 Brodaty, Henry, and Marika Donkin. 2009. "Family caregivers of people with dementia." Di-20 alogues in Clinical Neuroscience 11, no. 2 (June): 217–228. https://doi.org/10.31887/ 21 DCNS.2009.11.2/hbrodaty. 22 Cai, Yong. 2008. "An assessment of China's fertility level using the variable-r method." De-23 mography 45, no. 2 (May): 271–281. https://doi.org/10.1353/dem.0.0003. 24 -. 2010. "China's Below-Replacement Fertility: Government Policy or Socioeconomic 25 Development?" Population and Development Review 36 (3): 419–440. https://doi.org/10. 26 1111/j.1728-4457.2010.00341.x. 27 Cai, Yong, and Wang Feng. 2021. "The Social and Sociological Consequences of China's One-28 Child Policy." Annual Review of Sociology 47, no. Volume 47, 2021 (July): 587–606. https: 29 //doi.org/10.1146/annurev-soc-090220-032839. 30 Cai, Yong, Wang Feng, and Ke Shen. 2018. "Fiscal Implications of Population Aging and Social 31 Sector Expenditure in China." Population and Development Review 44 (4): 811-831. https: 32 //doi.org/10.1111/padr.12206. 33 Carr, Deborah, and Rebecca L. Utz. 2020. "Families in Later Life: A Decade in Review." Jour-34 35

- Caswell, Hal. 2019. "The formal demography of kinship: A matrix formulation." *Demographic Research* 41:679–712.
- 2020. "The formal demography of kinship II: Multistate models, parity, and sibship."
 Demographic Research 42 (June): 1097–1146.
- 5 . 2022. "The formal demography of kinship IV: Two-sex models and their approxima 6 tions." *Demographic Research* 47 (September): 359–396.

⁷ Caswell, Hal, Rachel Margolis, and Ashton Verdery. 2023. "The formal demography of kinship

- V: Kin loss, bereavement, and causes of death." *Demographic Research* 49 (December):
 1163–1200.
- Caswell, Hal, and Xi Song. 2021. "The formal demography of kinship III: Kinship dynamics
 with time-varying demographic rates." *Demographic Research* 45 (August): 517–546.

¹² Chan, Kit Yee, Wei Wang, Jing Jing Wu, Li Liu, Evropi Theodoratou, Josip Car, Lefkos Mid-

dleton, et al. 2013. "Epidemiology of Alzheimer's disease and other forms of dementia in

14 China, 1990–2010: a systematic review and analysis." *The Lancet* 381, no. 9882 (June):

¹⁵ 2016–2023. https://doi.org/10.1016/S0140-6736(13)60221-4.

- ¹⁶ Chan, Sally Wai-Chi. 2011. "Family Caregiving in Dementia: The Asian Perspective of a Global
 ¹⁷ Problem." *Dementia and Geriatric Cognitive Disorders* 30, no. 6 (January): 469–478. http
 ¹⁸ s://doi.org/10.1159/000322086.
- ¹⁹ Chang, Yu-Ping, Joanne Kraenzle Schneider, and Loralee Sessanna. 2011. "Decisional conflict
 ²⁰ among Chinese family caregivers regarding nursing home placement of older adults with
 ²¹ dementia." *Journal of Aging Studies* 25, no. 4 (December): 436–444. https://doi.org/10.
- ²² 1016/j.jaging.2011.05.001.
- Chen, Feinian, and Guangya Liu. 2009. "Population Aging in China." In *International Hand- book of Population Aging*, edited by Peter Uhlenberg, 157–172. Dordrecht: Springer Nether-
- *book of Population Aging*, edited by Peter Uhlenberg, 157–172
 lands. https://doi.org/10.1007/978-1-4020-8356-3_8.
- ²⁶ Cheng, Cheng. 2017. "Anticipated support from children and later-life health in the United
- States and China." *Social Science & Medicine* 179 (April): 201–209. https://doi.org/10.
 1016/j.socscimed.2017.03.007.
- ²⁹ Cheng, Sheung-Tak, Linda C. W. Lam, Timothy Kwok, Natalie S. S. Ng, and Ada W. T. Fung.
 ³⁰ 2013. "The Social Networks of Hong Kong Chinese Family Caregivers of Alzheimer's Disease: Correlates With Positive Gains and Burden." *The Gerontologist* 53, no. 6 (December): 998–1008. https://doi.org/10.1093/geront/gns195.
- ³³ China National Bureau of Statistics. 2021. "China Statistical yearbook 2021." *China Statistics*

³⁴ *Press*, Table 2–7.

Chung, Pil H, and Monica Alexander. 2019. "Kin Dependency Ratios: An Extension and Application of the Goodman Method for Estimating the Availability of Kin." *Presented at the*

³ *Population Association of America's 2019 Annual Meeting.*

⁴ Chung, Pil H., and Peter Hepburn. 2018. "Mass Imprisonment and the Extended Family." *Soci- ological Science* 5 (June): 335–360. https://doi.org/10.15195/v5.a15.

⁶ Cleary, Jennifer L., Jasmine A. Manalel, Sato Ashida, Christopher Steven Marcum, Jeffrey

7 Rewley, and Laura Koehly. 2022. "Interpersonal Correlates of Dementia Caregivers' Emo-

tional Support Networks: Considering Family History." *Research on Aging* 44, nos. 5-6

9 (May): 405–413. https://doi.org/10.1177/01640275211026919.

Cong, Zhen, and Merril Silverstein. 2008. "Intergenerational Support and Depression Among
 Elders in Rural China: Do Daughters-In-Law Matter?" *Journal of Marriage and Family* 70
 (3): 599–612. https://doi.org/10.1111/j.1741-3737.2008.00508.x.

¹³ Crimmins, Eileen M, Yasuhiko Saito, Jung Ki Kim, Yuan S Zhang, Isaac Sasson, and Mark

¹⁴ D Hayward. 2018. "Educational Differences in the Prevalence of Dementia and Life Ex-

pectancy with Dementia: Changes from 2000 to 2010." *The Journals of Gerontology: Se-*

ries B 73, no. suppl_1 (April): S20–S28. https://doi.org/10.1093/geronb/gbx135.

Evans, David, and Emmanuel Lee. 2014. "Impact of dementia on marriage: A qualitative systematic review." *Dementia* 13, no. 3 (May): 330–349. https://doi.org/10.1177/1471301212
 473882.

Feeney, Griffith, and Wang Feng. 1993. "Parity Progression and Birth Intervals in China: The
 Influence of Policy in Hastening Fertility Decline." *Population and Development Review* 19 (1): 61–101. https://doi.org/10.2307/2938385.

Feng, Kai, Xi Song, and Hal Caswell. 2024. "Kinship And Care: Racial Disparities In Potential
 Dementia Caregiving In The U.S. From 2000 To 2060." *The Journals of Gerontology: Series A* (April): glae106. https://doi.org/10.1093/gerona/glae106.

Feng, Zhanlian, Elena Glinskaya, Hongtu Chen, Sen Gong, Yue Qiu, Jianming Xu, and Winnie
 Yip. 2020. "Long-term care system for older adults in China: policy landscape, challenges, and future prospects." *The Lancet* 396, no. 10259 (October): 1362–1372. https://doi.org/
 10.1016/S0140-6736(20)32136-X.

Freedman, Vicki A., Emily M Agree, Judith A Seltzer, Kira S Birditt, Karen L Fingerman, Es ther M Friedman, I-Fen Lin, et al. 2024. "The Changing Demography of Late-Life Family
 Caregiving: A Research Agenda to Understand Future Care Networks for an Aging U.S.
 Population." *The Gerontologist* 64, no. 2 (February): gnad036. https://doi.org/10.1093/
 geront/gnad036.

Friedman, Esther, Vicki Freedman, and Sarah Patterson. 2023. "Families and Dementia: Estimates and Exposures." Innovation in Aging 7, no. Supplement_1 (December): 106–107. https://doi.org/10.1093/geroni/igad104.0346. Furstenberg, Frank F. 2020. "Kinship Reconsidered: Research on a Neglected Topic." Journal of Marriage and Family 82 (1): 364–382. https://doi.org/10.1111/jomf.12628. Furstenberg, Frank F., Lauren E. Harris, Luca Maria Pesando, and Megan N. Reed. 2020. "Kinship Practices Among Alternative Family Forms in Western Industrialized Societies." Journal of Marriage and Family 82 (5): 1403–1430. https://doi.org/10.1111/jomf.12712. Goodman, Leo A., Nathan Keyfitz, and Thomas W. Pullum. 1974. "Family formation and the frequency of various kinship relationships." Theoretical Population Biology 5, no. 1 (February): 1-27. https://doi.org/10.1016/0040-5809(74)90049-5. Goody, Jack. 1996. "Comparing Family Systems in Europe and Asia: Are There Different Sets of Rules?" Population and Development Review 22 (1): 1-20. https://doi.org/10.2307/ 2137684. Grigoryeva, Angelina. 2017. "Own Gender, Sibling's Gender, Parent's Gender: The Division of Elderly Parent Care among Adult Children." American Sociological Review 82, no. 1 (February): 116–146. https://doi.org/10.1177/0003122416686521. Haberkern, Klaus, and Marc Szydlik. 2010. "State care provision, societal opinion and children's care of older parents in 11 European countries." Ageing & Society 30, no. 2 (February): 299-323. https://doi.org/10.1017/S0144686X09990316. Hammel, E. A., C. Mason, K. Wachter, F. Wang, and H. Yang. 1991. "Rapid population change and kinship: the effects of unstable demographic changes on Chinese kinship networks, 1750–2250." In Consequences Of Rapid Population Growth In Developing Countries. Taylor & Francis. Hayes, Jeanne, Craig Boylstein, and Mary K. Zimmerman. 2009. "Living and loving with dementia: Negotiating spousal and caregiver identity through narrative." Journal of Aging Studies 23, no. 1 (January): 48–59. https://doi.org/10.1016/j.jaging.2007.09.002. Hu, Anning. 2017. "Providing More but Receiving Less: Daughters in Intergenerational Exchange in Mainland China." Journal of Marriage and Family 79 (3): 739–757. Hu, Bo, and Sai Ma. 2018. "Receipt of informal care in the Chinese older population." Ageing & Society 38, no. 4 (April): 766–793. https://doi.org/10.1017/S0144686X16001318.

Freedman, Vicki A., Sarah E. Patterson, Jennifer C. Cornman, and Jennifer L. Wolff. 2022.

"A day in the life of caregivers to older adults with and without dementia: Comparisons

of care time and emotional health." Alzheimer's & Dementia 18 (9): 1650–1661. https:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

//doi.org/10.1002/alz.12550.

Jia, Jianping, Cuibai Wei, Shuoqi Chen, Fangyu Li, Yi Tang, Wei Qin, Lina Zhao, et al. 2018. 1 "The cost of Alzheimer's disease in China and re-estimation of costs worldwide." Alzheimer's 2 & Dementia 14, no. 4 (April): 483–491. https://doi.org/10.1016/j.jalz.2017.12.006. 3 Jia, Jianping, Xiumei Zuo, Xiang-Fei Jia, Changbiao Chu, Liyong Wu, Aihong Zhou, Cuibai 4 Wei, et al. 2016. "Diagnosis and treatment of dementia in neurology outpatient departments 5 of general hospitals in China." Alzheimer's & Dementia 12, no. 4 (April): 446–453. https: 6 //doi.org/10.1016/j.jalz.2015.06.1892. 7 Jia, Longfei, Meina Quan, Yue Fu, Tan Zhao, Yan Li, Cuibai Wei, Yi Tang, et al. 2020. "De-8 mentia in China: epidemiology, clinical management, and research advances." The Lancet g *Neurology* 19, no. 1 (January): 81–92. https://doi.org/10.1016/S1474-4422(19)30290-X. 10 Jiang, Lin. 1995. "Changing Kinship Structure and its Implications for Old-Age Support in 11 Urban and Rural China." *Population Studies* 49 (1): 127–145. 12 Kang, Younhee, Dukyoo Jung, Jung Jae Lee, Sumalee Lirtmunlikaporn, Huei-Chuan Sung, 13 Miyae Yamakawa, Yujin Hur, and Leeho Yoo. 2023. "A comparison of dementia care 14 and policy in five Asian regions: A literature review." Journal of Korean Gerontological 15 Nursing 25, no. 2 (May): 174-184. https://doi.org/10.17079/jkgn.2303.16001. 16 Kitagawa, Evelyn M. 1955. "Components of a Difference Between Two Rates*." Journal of the 17 American Statistical Association 50, no. 272 (December): 1168–1194. https://doi.org/10. 18 1080/01621459.1955.10501299. 19 Kohler, Iliana V., Fabrice Kämpfen, Chiwoza Bandawe, and Hans-Peter Kohler. 2023. "Cog-20 nition and Cognitive Changes in a Low-Income Sub-Saharan African Aging Population." 21 Journal of Alzheimer's disease : JAD 95 (1): 195–212. https://doi.org/10.3233/JAD-22 230271. 23 Lang, Linda, Angela Clifford, Li Wei, Dongmei Zhang, Daryl Leung, Glenda Augustine, Isaac 24 M. Danat, et al. 2017. "Prevalence and determinants of undetected dementia in the com-25 munity: a systematic literature review and a meta-analysis." BMJ Open 7, no. 2 (February): 26 e011146. https://doi.org/10.1136/bmjopen-2016-011146. 27 Lei, Lei. 2013. "Sons, Daughters, and Intergenerational Support in China." Chinese Sociological 28 *Review* 45, no. 3 (April): 26–52. https://doi.org/10.2753/CSA2162-0555450302. 29 Liang, Zai. 2016. "China's Great Migration and the Prospects of a More Integrated Society." 30 Annual Review of Sociology 42, no. Volume 42, 2016 (July): 451-471. https://doi.org/10. 31 1146/annurev-soc-081715-074435. 32 Lin, Zhiyong, and Dan Tang. 2023. "Separated kin: location of multiple children and men-33 tal health trajectories of older parents in rural China." Aging & Mental Health 27, no. 2 34 (February): 425–433. https://doi.org/10.1080/13607863.2021.2019191. 35

 Liu, Huiying, Boye Fang, Jieling Chan, and Gengzhen Chen. 2019. "The relationship between comorbidities in dementia patients and burden on adult–child primary caregivers: Does

having a secondary caregiver matter?" International Journal of Mental Health Nursing 28

4 (6): 1306–1317. https://doi.org/10.1111/inm.12640.

5 Livingston, Gill, Andrew Sommerlad, Vasiliki Orgeta, Sergi G. Costafreda, Jonathan Huntley,

⁶ David Ames, Clive Ballard, et al. 2017. "Dementia prevention, intervention, and care."

The Lancet 390, no. 10113 (December): 2673–2734. https://doi.org/10.1016/S0140-6736(17)31363-6.

Loy, Clement T., Peter R. Schofield, Anne M. Turner, and John BJ Kwok. 2014. "Genetics of dementia." *The Lancet* 383, no. 9919 (March): 828–840. https://doi.org/10.1016/S0140-6736(13)60630-3.

Luo, Ye, Lingling Zhang, and Xi Pan. 2019. "Neighborhood Environments and Cognitive Decline Among Middle-Aged and Older People in China." *The Journals of Gerontology:*

Series B 74, no. 7 (September): e60–e71. https://doi.org/10.1093/geronb/gbz016.

Murphy, Michael. 2008. "Variations in Kinship Networks Across Geographic and Social Space."
 Population and Development Review 34 (1): 19–49. https://doi.org/10.1111/j.1728 4457.2008.00204.x.

2010. "Family and Kinship Networks in the Context of Ageing Societies." In *Ageing in Advanced Industrial States: Riding the Age Waves - Volume 3*, edited by Shripad Tul japurkar, Naohiro Ogawa, and Anne H. Gauthier, 263–285. Dordrecht: Springer Nether-

lands. https://doi.org/10.1007/978-90-481-3553-0_11.

Nichols, Emma, Jaimie D Steinmetz, Stein Emil Vollset, Kai Fukutaki, Julian Chalek, Foad
Abd-Allah, Amir Abdoli, et al. 2022. "Estimation of the global prevalence of dementia
in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease
Study 2019." *The Lancet Public Health* 7, no. 2 (February): e105–e125. https://doi.org/10.
1016/S2468-2667(21)00249-8.

Nichols, Emma, Cassandra E I Szoeke, Stein Emil Vollset, Nooshin Abbasi, Foad Abd-Allah,
 Jemal Abdela, Miloud Taki Eddine Aichour, et al. 2019. "Global, regional, and national
 burden of Alzheimer's disease and other dementias, 1990–2016: a systematic analysis for
 the Global Burden of Disease Study 2016." *The Lancet Neurology* 18, no. 1 (January): 88–
 106. https://doi.org/10.1016/S1474-4422(18)30403-4.

Ory, M. G., R. R. Hoffman, J. L. Yee, S. Tennstedt, and R. Schulz. 1999. "Prevalence and impact of caregiving: a detailed comparison between dementia and nondementia caregivers." *The*

Gerontologist 39, no. 2 (April): 177–185. https://doi.org/10.1093/geront/39.2.177.

Patterson, Sarah E, Ashley M Tate, Yi-Ling Hu, Jue (Jessie) Wang, Robert F Schoeni, and Hwa-Jung Choi. 2023. "The Social Cost of Providing Care to Older Adults With and Without Dementia." *The Journals of Gerontology: Series B* 78, no. Supplement_1 (February): S71–

⁴ S80. https://doi.org/10.1093/geronb/gbac146.

5 Pedroza, Paola, Molly K Miller-Petrie, Carina Chen, Suman Chakrabarti, Abigail Chapin, Si-

6 mon Hay, Golsum Tsakalos, Anders Wimo, and Joseph L Dieleman. 2022. "Global and

⁷ regional spending on dementia care from 2000–2019 and expected future health spend-

⁸ ing scenarios from 2020–2050: An economic modelling exercise." *eClinicalMedicine* 45

9 (March): 101337. https://doi.org/10.1016/j.eclinm.2022.101337.

- Peng, Xizhe. 1987. "Demographic Consequences of the Great Leap Forward in China's Provinces."
 Population and Development Review 13 (4): 639–670. https://doi.org/10.2307/1973026.
- . 2011. "China's Demographic History and Future Challenges." *Science* 333, no. 6042
 (July): 581–587. https://doi.org/10.1126/science.1209396.

Quail, Zara, Angelina Wei, Vicky Fan Zhang, and Mark McLean Carter. 2020. "Barriers to
 dementia diagnosis and care in China." *BMJ Case Reports CP* 13, no. 3 (March): e232115.

¹⁶ https://doi.org/10.1136/bcr-2019-232115.

Reed, Megan N., Linda Li, Luca Maria Pesando, Lauren E. Harris, Frank F. Furstenberg, and
Julien O. Teitler. 2023. "Communication with Kin in the Wake of the COVID-19 Pandemic." *Socius* 9 (January): 23780231231199388. https://doi.org/10.1177/237802312311
99388.

²¹ Reyes, Adriana M., Robert F. Schoeni, and Vicki A. Freedman. 2021. "National estimates of

kinship size and composition among adults with activity limitations in the United States."

Demographic research 45 (November): 1097. https://doi.org/10.4054/demres.2021.45.36.

Ruiz, Milagros, Yaoyue Hu, Pekka Martikainen, and Martin Bobak. 2023. "Life Course So cioeconomic Position and Cognitive Aging Trajectories: A Cross-National Cohort Study
 in China and England." *Innovation in Aging* 7, no. 6 (July): igad064. https://doi.org/10.

²⁷ 1093/geroni/igad064.

Schulz, Richard, Jill Eden, Committee on Family Caregiving for Older Adults, Board on Health
 Care Services, Health and Medicine Division, and Engineering National Academies of

³⁰ Sciences. 2016. "Family Caregiving Roles and Impacts." In *Families Caring for an Aging*

America. National Academies Press (US), November.

Schulz, Richard, and Lynn M. Martire. 2004. "Family caregiving of persons with dementia: prevalence, health effects, and support strategies." *The American Journal of Geriatric Psy-*

³³ prevalence, health effects, and support strategies." *The American Journal of Geriatric Psy-*³⁴ *chiatry: Official Journal of the American Association for Geriatric Psychiatry* 12 (3): 240–

35 249.

Shanas, Ethel. 1973. "Family-Kin Networks and Aging in Cross-Cultural Perspective." *Journal of Marriage and Family* 35 (3): 505–511. https://doi.org/10.2307/350586.

Silverstein, Merril, Daphna Gans, and Frances M. Yang. 2006. "Intergenerational Support to
 Aging Parents: The Role of Norms and Needs." *Journal of Family Issues* 27, no. 8 (Au-

⁵ gust): 1068–1084. https://doi.org/10.1177/0192513X06288120.

⁶ Silverstein, Merril, and Roseann Giarrusso. 2010. "Aging and Family Life: A Decade Review."

- Journal of marriage and the family 72, no. 5 (October): 1039. https://doi.org/10.1111/j. 1741-3737.2010.00749.x.
- Sohn, Heeju. 2023. "Structural Inequities in the Kin Safety Net: Mapping the Three-Generational
 Network throughout Early Adulthood." *American Journal of Sociology* 128, no. 6 (May):
 1650–1677. https://doi.org/10.1086/724817.

Song, Xi, Cameron D. Campbell, and James Z. Lee. 2015. "Ancestry Matters: Patrilineage
 Growth and Extinction." *American Sociological Review* 80, no. 3 (June): 574–602. https:
 //doi.org/10.1177/0003122415576516.

- Song, Xi, and Hal Caswell. 2022. "The Role of Kinship in Racial Differences in Exposure to
 Unemployment." *Demography* 59, no. 4 (August): 1325–1352. https://doi.org/10.1215/
 00703370-10057831.
- Song, Xi, and Robert D. Mare. 2019. "Shared Lifetimes, Multigenerational Exposure, and Educational Mobility." *Demography* 56, no. 3 (May): 891–916. https://doi.org/10.1007/
 s13524-019-00772-8.
- Spasova, Slavina, Rita Baeten, Stéphanie Coster, Dalila Ghailani, Ramón Peña-Casas, Bart Vanhercke, et al. 2018. "Challenges in long-term care in Europe." *Eurohealth* 24 (4): 7–12.
- Sun, Fei, Emmanuel Chima, Tracy Wharton, and Vijeth Iyengar. 2020. "National policy actions on dementia in the Americas and Asia-Pacific: Consensus and challenges." *Revista Panamericana de Salud Pública* 44:e2.
- Sun, Ken Chih-Yan. 2014. "Transnational Kinscription: A Case of Parachute Kids in the USA
 and Their Parents in Taiwan." *Journal of Ethnic and Migration Studies* 40, no. 9 (Septem-

²⁸ ber): 1431–1449. https://doi.org/10.1080/1369183X.2013.847359.

²⁹ United Nation. 2022. World Population Prospects: The 2022 Revision. United Nations, New
 ³⁰ York.

Verdery, Ashton M. 2019. *Modeling the Future of Chinas Changing Family Structure to 2100*.
 Technical report. American Enterprise Institute.

Verdery, Ashton M., and Rachel Margolis. 2017. "Projections of white and black older adults
 without living kin in the United States, 2015 to 2060." *Proceedings of the National Academy* of Sciences 114, no. 42 (October): 11109–11114. https://doi.org/10.1073/pnas.171034111
 4.

- Wachter, K. W. 1997. "Kinship resources for the elderly." *Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences* 352, no. 1363 (December): 1811– 1817. https://doi.org/10.1098/rstb.1997.0166.
- Wang, Feng. 2011. "The Future of a Demographic Overachiever: Long-Term Implications of the Demographic Transition in China." *Population and Development Review* 37:173–190.

Wang, Feng, Yong Cai, and Baochang Gu. 2013. "Population, Policy, and Politics: How Will
 History Judge China's One-Child Policy?" *Population and Development Review* 38:115–12
 129.

¹³ Wang, Feng, Baochang Gu, and Yong Cai. 2016. "The End of China's One-Child Policy." *Studies in Family Planning* 47 (1): 83–86. https://doi.org/10.1111/j.1728-4465.2016.00052.x.

Wang, Feng, and Andrew Mason. 2007. "Population Ageing: Challenges, Opportunities, and
 Institutions." In *Transition and Challenge: China's Population at the Beginning of the 21st Century*, edited by Zhongwei Zhao and Fei Guo, 0. Oxford University Press, February.

18 https://doi.org/10.1093/acprof:oso/9780199299294.003.0011.

Wang, Huali, Hengge Xie, Qiumin Qu, Wei Chen, Yongan Sun, Nan Zhang, Yu Liu, et al. 2019.
"The continuum of care for dementia: needs, resources and practice in China." *Journal of Global Health* 9 (2): 020321. https://doi.org/10.7189/jogh.09.020321.

Wang, Shanshan, Daphne Sze Ki Cheung, and Angela Y. M. Leung. 2019. "Overview of de mentia care under the three-tier long-term care system of China." *Public Health Nursing* 36 (2): 199–206. https://doi.org/10.1111/phn.12573.

²⁵ Whyte, Martin King, Wang Feng, and Yong Cai. 2015. "Challenging Myths About China's One ²⁶ Child Policy." *The China Journal* 74 (July): 144–159. https://doi.org/10.1086/681664.

²⁷ Williams, Iván, Diego Alburez-Gutierrez, Xi Song, and Hal Caswell. 2022. DemoKin: An R

- Package to Implement Demographic Matrix Kinship Models (https://github.com/IvanWil
 li/DemoKin).
- Wolf, A. Douglas. 1994. "The Elderly and Their Kin: Patterns of Availability and Access." In
 Demography of Aging. National Academies Press (US).
- ³² Wu, Christina, Lin Gao, Shulin Chen, and Hengjin Dong. 2016. "Care services for elderly peo-³³ ple with dementia in rural China: a case study." *Bulletin of the World Health Organization*
- ³⁴ 94, no. 3 (March): 167–173. https://doi.org/10.2471/BLT.15.160929.

Wu, Jialan, Siman Chen, Huangliang Wen, Yayan Yi, and Xiaoyan Liao. 2020. "Health status,
 care needs, and assessment for beneficiaries with or without dementia in a public long-term care insurance pilot in Guangzhou, China." *BMC Health Services Research* 20, no. 1
 (December): 1127. https://doi.org/10.1186/s12913-020-05965-1.

4 (December): 1127. https://doi.org/10.1186/s12913-020-05965-1.

 Xie, Yu, and Haiyan Zhu. 2009. "Do Sons or Daughters Give More Money to Parents in Urban China?" *Journal of Marriage and Family* 71 (1): 174–186. https://doi.org/10.1111/j.1741-2727 2009.00599 --

⁷ 3737.2008.00588.x.

Yang, Haiou. 1992. "Population dynamics and kinship of the Chinese rural elderly: A microsimulation study." *Journal of Cross-Cultural Gerontology* 7, no. 2 (April): 135–150. https://doi.org/10.1007/BF00115941.

Ye, Bei, Yingxin Xu, Wing Kit Chan, Zhongyan Zhang, Sophia Lobanov-Rostovsky, Natasha Curry, Eric John Brunner, and Jing Liao. 2024. "Why are people with dementia overlooked in long-term care insurance policy in Guangzhou, China?" *BMC Health Services Research*

¹⁴ 24, no. 1 (December): 1646. https://doi.org/10.1186/s12913-024-12126-1.

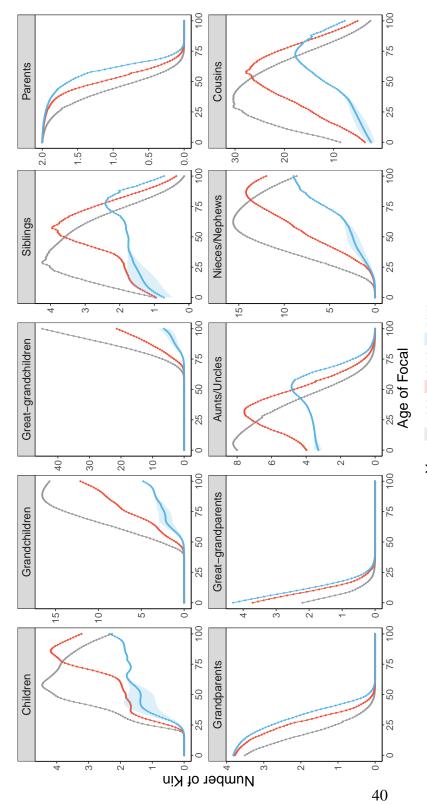
Zagheni, Emilio. 2015. "Microsimulation in Demographic Research." *International Encyclope- dia of Social and Behavioral Sciences* 15:343–346.

Zeng, Yi, Linda Gerorge, Melanie Brasher, Danan Gu, and James Vaupel. 2016. "Older Par ents Receive Greater Filial Piety and Care from Daughters than Sons in China." *American Journal of Medical Research* 3 (1): 244–272.

Zeng, Yi, Zhenglian Wang, Leiwen Jiang, and Danan Gu. 2008. "Future trend of family house holds and elderly living arrangement in China." *Genus* 64 (1/2): 9–36.

Zhang, Yuan, Qian Song, and Jen-Hao Chen. 2022. "Cumulative (Dis)Advantage in Cognitive Health: Rural/Urban Residency, Hukou, and Cognitive Aging in Older Chinese." *Innovation in Aging* 6, no. Supplement_1 (November): 170–171. https://doi.org/10.1093/geroni/igac059.678.

²⁶ Zhang, Zhenmei. 2006. "Gender Differentials in Cognitive Impairment and Decline of the Old-²⁷ est Old in China." *The Journals of Gerontology: Series B* 61, no. 2 (March): S107–S115.

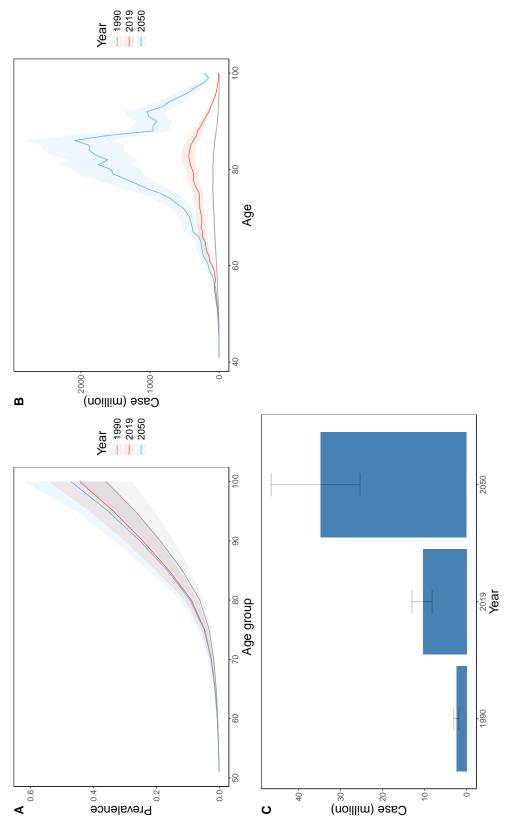

²⁸ https://doi.org/10.1093/geronb/61.2.S107.

Zhou, Maigeng, Haidong Wang, Xinying Zeng, Peng Yin, Jun Zhu, Wanqing Chen, Xiaohong
 Li, et al. 2019. "Mortality, morbidity, and risk factors in China and its provinces, 1990 2017: a systematic analysis for the Global Burden of Disease Study 2017." *Lancet (London, England)* 394, no. 10204 (September): 1145–1158. https://doi.org/10.1016/S0140-

³³ 6736(19)30427-1.

- 1 Zhou, Zhangjun, Ashton M Verdery, and Rachel Margolis. 2019. "No Spouse, No Son, No
- ² Daughter, No Kin in Contemporary China: Prevalence, Correlates, and Differences in Eco-
- nomic Support." *The Journals of Gerontology: Series B* 74, no. 8 (October): 1453–1462.
- 4 https://doi.org/10.1093/geronb/gby051.

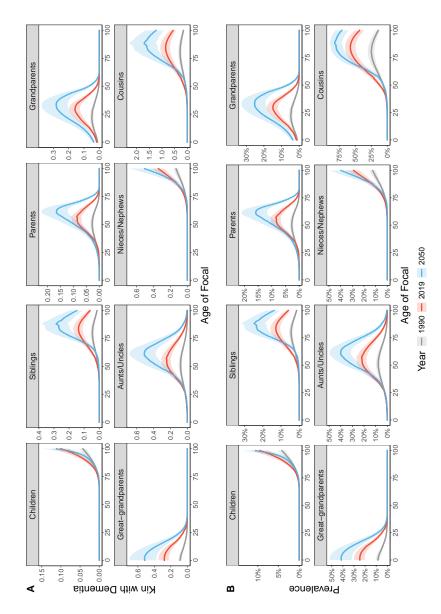
¹ Figures



Year -- 1990 -- 2019 -- 2050

Figure 1. Expected Numbers of Kin of Various Kinds as a Function of the Age of Focal in 1990, 2019, and 2050

Data sources: Institute for Health Metrics and Evaluation (IHME). Findings from the Global Burden of Disease (GBD) Study 2019. Seattle, WA: IHME, 2021; United Nations, Department of Economic and Social Affairs, Population Division (2022). World Population Prospects 2022 Revision, Online Edition; GBD 2019 Dementia Forecasting Collaborators (Nichols et al. 2022)


The living kin are estimated from the time-varying kinship model using period age-specific fertility and mortality rates from 1950 to 2050 from the UN's 2022 Revision of World Population Prospects (United Nation 2022). The results in a particular year reflect the changing mortality and fertility schedules in China from 1950 up to that year. The methodology is described in the Materials and Methods section. To estimate the number of all kinds of kin from both paternal and maternal ancestry, we assume that the demographic rates of female and male kin are equal. The shaded areas on Notes: The figure presents the expected numbers of living kin of various types as a function of the age of Focal in 1990, 2019, and 2050, respectively. he 2050 projection indicate the range of uncertainty in the estimates resulting from different WPP fertility scenarios.

Data sources: Institute for Health Metrics and Evaluation (IHME). Findings from the Global Burden of Disease (GBD) Study 2019. Seattle, WA: IHME, 2021. GBD 2019 Dementia Forecasting (Nichols et al. 2022). - ~

- *Notes*: Panel A shows the age-specific prevalence rate of dementia in 1990, 2019, and 2050; Panel B shows the number of dementia cases (in million) in 1990, 2019, and 2050; and Panel C shows the total number of dementia cases (in million) in 1990, 2019, and 2050. These numbers are calculated using dementia prevalence estimates from the GBD 2019 Dementia Forecasting Collaborators (Nichols et al. 2022). The shaded areas and error bars indicate the range of uncertainty in the dementia prevalence estimates resulting from different GBD scenarios.
 - დ **4** ი თ

Estimated Probabilities of Having at Least One Kin with Dementia as a Function of the Age of Focal in 1990, 2019, Figure 3. (A) Estimated Number of Kin with Dementia as a Function of the Age of Focal in 1990, 2019, and 2050. (B) and 2050.

- 0

Data sources: Institute for Health Metrics and Evaluation (IHME). Findings from the Global Burden of Disease Study 2019. Seattle, WA: IHME, 2021; United Nations, Department of Economic and Social Affairs, Population Division (2022). World Population Prospects 2022 Revision, Online Edition.

ო

Notes: Section A presents the count of kin, categorized by kin type, with dementia for an individual by the age of that individual in the years 1990, 2019, and 2050. Section B shows the probability that an individual has a certain type of kin with dementia by the age of the individual in 1990, 2019, and 2050. These numbers are estimated from time-varying age-specific fertility, mortality, and prevalence of dementia in the population. The estimation details are described in the Methods section. The shaded areas for the blue lines indicate the range of uncertainty in the estimates resulting 4 ß 9

¹ from different GBD dementia prevalence and WPP projected fertility scenarios. The shaded areas for the red and gray lines indicate the range of ² uncertainty in the estimates resulting from different GBD dementia prevalence scenarios.

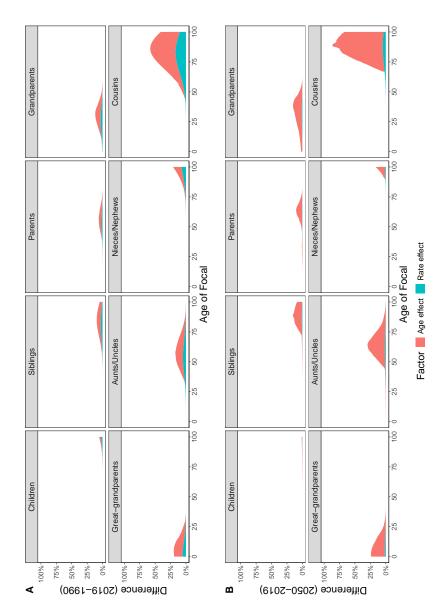


Figure 4. (A) Decomposition of the Difference in the Number of Kin with Dementia between 1990 and 2019. (B) Decomposition of the Difference in the Number of Kin with Dementia between 2019 and 2050

Data sources: Institute for Health Metrics and Evaluation (IHME). Findings from the Global Burden of Disease Study 2019. Seattle, WA: IHME, 2021; United Nations, Department of Economic and Social Affairs, Population Division (2022). World Population Prospects 2022 Revision, Online Edition. -N

4 ო

Notes: Sections A and B present the Kitagawa's decomposition results. The total area of each graph gives the difference in the number of kin with dementia between 1990 and 2019 (A), 2019 and 2050 (B), partitioned into contributions from the difference in age structure of kin and the difference 6 2

in age-specific dementia rate.

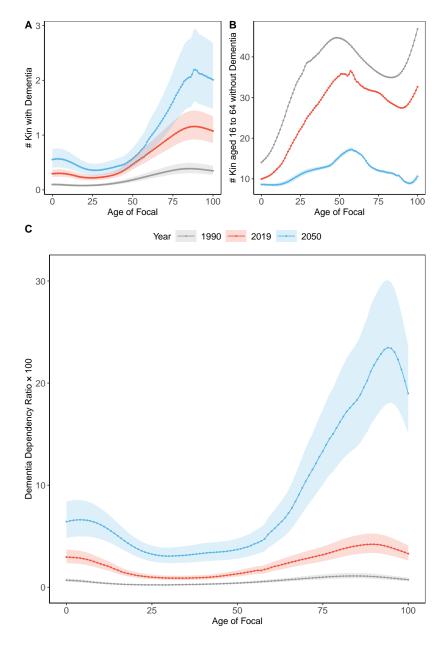


Figure 5. (A) The Number of Kin with Dementia. (B) The Number of Kin Aged 16–64 without Dementia. (C) The Dementia Dependency Ratio (DDR(x)) as a Function of the Age of Focal in 1990, 2019, and 2050.

2 Data sources: Institute for Health Metrics and Evaluation (IHME). Findings from the Global Burden of Disease

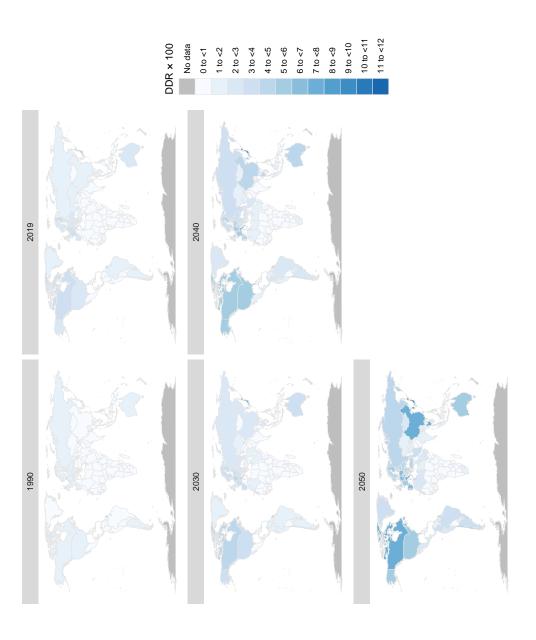
1

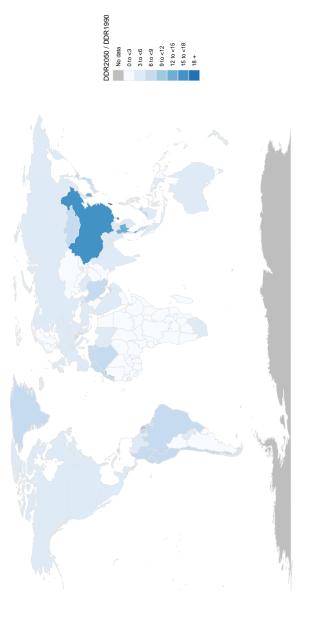
- 5 Notes: These figures show the estimated number of kin with dementia, the number of kin aged 16-64 without
- 6 dementia, and the estimated dementia dependency ratio (DDR) by age of individuals in 1990, 2019, and 2050.
- 7 DDR refers to the proportion of family members with dementia to family members without dementia who are at

³ Study 2019. Seattle, WA: IHME, 2021; United Nations, Department of Economic and Social Affairs, Population

⁴ Division (2022). World Population Prospects 2022 Revision, Online Edition.

risk for providing family care. The mathematical definition of DDR is discussed in the Methods section. The
 shaded areas for the blue lines indicate the range of uncertainty in the estimates resulting from different GBD
 dementia prevalence and WPP projected fertility scenarios. The shaded areas for the red and gray lines indicate
 the range of uncertainty in the estimates resulting from different GBD dementia prevalence scenarios.




Figure 6. Population-Level Dementia Dependency Ratio $DDR_{pop}(t)$ Across Countries and Regions in 1990, 2019, 2030, 2040, and 2050

2 Data sources: Institute for Health Metrics and Evaluation (IHME). Findings from the Global Burden of Disease (GBD) Study 2019. Seattle, WA:

-

IHME, 2021; United Nations, Department of Economic and Social Affairs, Population Division (2022). World Population Prospects 2022 Revision, Online Edition; GBD 2019 Dementia Forecasting Collaborators (Nichols et al. 2022). -

- ო N
- *Notes*: This figure presents five heat maps of DDR_{pop}(t) for countries of the world in 1990, 2019, and 2050. We apply the method used for estimating the DDR index for China to other countries. The indexes draw on dementia data from GBD 2019 Dementia Forecasting Collaborators and data of fertility and mortality rates in the UN's 2022 Revision of World Population Prospects (United Nation 2022). A darker blue color indicates a higher caregiving burden caused by dementia groups, whereas a lighter blue color indicates a lower caregiving burden caused by dementia on kinship groups, whereas a lighter blue color indicates a lower caregiving burden caused by dementia on kinship groups. The detailed DDR estimates are presented in Appendix Table S3. 4 2 9 2

Figure 7. Change in the Population-Level Dementia Dependency Ratio Across Countries and Regions from 1990 to 2050

Data sources: Institute for Health Metrics and Evaluation (IHME). Findings from the Global Burden of Disease Study 2019. Seattle, WA: IHME, 2021; United Nations, Department of Economic and Social Affairs, Population Division (2022). World Population Prospects 2022 Revision, Online Edition. N

Notes: This figure presents a heat map of changes in the population-level Dementia Dependency Ratio (DDR) from 1990 to 2050 across 194 countries. We apply the method used for estimating DDR in China to other countries and calculate the ratio of DDR in 2050 relative to that in 1990. A dark blue color indicates a rapidly increasing dementia burden on kin, whereas a light blue color indicates a slowly increasing burden caused by dementia on kin ഹ S

over time. ω

Supplementary appendix for

The Present and Future Dementia Burden in China: Kinship-Based Projections and Global Comparisons

This PDF file includes:

Data Description

Figs. S1 to S3

Tables S1 to S3

References and Notes

Contents

1	Inpu	it Data Used for Kinship Estimates	1
	1.1	Demographic Inputs for Analysis	1
	1.2	Data Sources and Estimation Methods	1
	1.3	Population Projection Method	1
	1.4	Medium-Variant Projection	2
	1.5	Methodological Details	2
2	Dem	entia Prevalence	3
	2.1	Dementia Prevalence Inputs, Definition, and Interpolation	3
	2.2	Data Sources and Estimation Methods	3
	2.3	Dementia Prevalence Projection	4
3	Unc	ertainty Interval	6
4	Rep	lication Package	7
5	Figu	res and Tables	8
Re	feren	ces	23

1 Input Data Used for Kinship Estimates

1.1 Demographic Inputs for Analysis

The World Population Prospects (WPP) 2022 serves as the primary data source for the analysis. The kinship models utilize annual single-year age-specific fertility and mortality rates spanning the years from 1950 to 2100 for 195 countries and territories. As we discussed in the Materials and Methods section, the time-varying kinship model also relies on a time-zero boundary condition $\mathbf{k}(x, 0)$, which was obtained by the distribution of mother's ages at childbirth at time 0 implied by the stable population assumption (see equation (3) in Caswell (2019)). Specifically, we derived this distribution by dividing age-specific birth counts by the total number of births in a specific year.

1.2 Data Sources and Estimation Methods

The age-specific demographic estimates for the years 1950 to 2022 are derived from a comprehensive range of data sources, including 2,890 nationally representative sample surveys, 1,758 censuses, vital registration systems, and surveys conducted between 1950 and 2022. The WPP 2022 applies additional techniques such as smoothing and adjustment methods to address missing values and generate single-year estimates. These methods aim to enhance the accuracy and reliability of the demographic data used in the analysis.

1.3 Population Projection Method

The WPP 2022 employs probabilistic projection methods to project population changes from 2022 to 2100. This projection method takes into consideration historical patterns in migration, death, and fertility rates. Various estimates are produced by the WPP 2022 based on different assumptions, allowing for a range of possible population scenarios. For our calculations, we rely on the medium-variant projection, as it represents the most likely future trend among the

different projections presented by the WPP 2022.

1.4 Medium-Variant Projection

The medium scenario, based on the WPP medium-variant projection, takes into account specific trends for fertility and life expectancy. It predicts a continued decline in fertility rates in countries where women have, on average, two or more children during their lifetime. Conversely, it assumes a slight increase in fertility rates in countries where women are currently having fewer than two children. Additionally, the medium scenario assumes a general improvement in life expectancy across all countries. Demographic rates based on these assumptions jointly determine the projected population changes in the medium-variant projection.

1.5 Methodological Details

For a more detailed explanation of the methodologies utilized in the World Population Prospects 2022, we recommend referring to the WPP 2022 Methodology Report (United Nation 2022a). This report provides comprehensive descriptions and insights into the specific methodologies employed in estimating historical and projected fertility and mortality rates. The Materials and Methods section in our main text provides an overview of the demographic models of kinship utilized in our analysis. However, for a more comprehensive introduction to the models and additional model extensions, we recommend referring to the series of publications on the formal demography of kinship (Caswell 2019, 2020, 2022; Caswell and Song 2021). These publications delve into detailed explanations and advancements related to the demographic models employed in our study.

2 Dementia Prevalence

2.1 Dementia Prevalence Inputs, Definition, and Interpolation

Our analyses draw on datasets of female age-specific prevalence rates of Alzheimer's and other dementia (hereafter referred to as dementia) for 195 countries and territories. These prevalence rates, covering the years 1990, 2019, 2030, 2040, and 2050, were estimated by the Global Burden of Disease (GBD) 2019 Dementia Forecasting Collaborators and published in Nichols et al. (2022) (see also GBD 2019 Collaborators (2021) and Nichols et al. (2019)).

It is important to note that the dementia prevalence rates used for 1990 and 2019 exhibit a slight deviation from the estimates provided in the online GBD Results Tool. The online GBD Results Tool employs a narrower definition, excluding dementia caused by some clinical diseases. Nichols et al. (2022) adopted a broader definition of dementia, encompassing not only Alzheimer's disease and other dementia but also dementia caused by Down syndrome, Parkinson's disease, clinical stroke, and traumatic brain injury. We followed the inclusive definition of dementia in this study as it enables a more comprehensive assessment of the overall burden of dementia (GBD 2019 Dementia Collaborators and others 2021).

The original dementia prevalence provided by the GBD Dementia Collaborators is grouped into five-year age intervals. We applied linear interpolation to estimate the prevalence rates for single-year age groups up to the age of 100.

2.2 Data Sources and Estimation Methods

The GBD (2019) systematically collected all available data on dementia prevalence from crosssectional studies, cohort studies, and administrative claims databases. The GBD 2019 identified 522 sources that reported on dementia prevalence, covering 18 out of 21 world regions. In the case of China, the prevalence estimate was derived from 43 empirical studies. All the data sources used in the GBD 2019 are accessible at: http://ghdx.healthdata.org/gbd-2019/ data-input-sources.

To estimate dementia prevalence by age, sex, and year for 195 countries and territories, the GBD study utilized the Disease Modelling Meta-Regression (DisMod-MR) 2.1, a Bayesian meta-regression tool commonly used for nonfatal modelling (Flaxman, Vos, and Murray 2015). In addition to the prevalence input, two country-level covariates were incorporated into the analysis. Age-standardized education was considered as a proxy for general brain health, which could potentially have a protective effect against dementia. Age-standardized smoking prevalence was also included as a covariate, as existing literature has shown a positive relationship between smoking and dementia.

The data sources for Western Europe, East Asia, high-income Asia-Pacific, and high-income North America were more abundant compared to other regions. However, there was a lack of available input data for Oceania, central Asia, or southern sub-Saharan Africa. To address this limitation, the GBD 2019 used predictions based on surveys that collected data on cognitive tests and functional limitations. This approach aimed to expand data coverage and provide additional information in regions where data on dementia prevalence were scarce.

The DisMod-MR 2.1 model incorporated these covariates and leveraged information from locations within the same region that had available data to generate estimates for locations with little or no input data. This methodology allowed for more comprehensive estimation of dementia prevalence across various regions.

2.3 Dementia Prevalence Projection

To project dementia prevalence rates beyond 2019, our analysis relied on forecasted rates for 2030, 2040, and 2050 from data provided in Nichols et al. 2022 (Nichols et al. 2022) by the GBD 2019 Dementia Forecasting Collaborators. The forecasting method involves two key components: (1) forecasting dementia prevalence attributable to risk factors and (2) forecasting

risk-deleted dementia prevalence. The final total forecasted dementia prevalence was obtained by combining these two components.

The GBD first forecasted changes in the prevalence of dementia from 2019 to 2050 attributable to three well-known risk factors: high body-mass index, high fasting plasma glucose, and smoking. Additional risk factors, such as low physical activity, high blood pressure, low education, alcohol use, and exposure to air pollution, were evaluated for their association with dementia prevalence. If these risk factors demonstrated significance and their effect direction aligned with previous evidence, they were included in the forecasting model. The GBD first forecasted the prevalence of these risk factors from 2019 to 2050 and then predicted riskattributable dementia prevalence globally, by world region, and by country.

To quantify risk factors other than education, the GBD developed a summary exposure value (SEV), which is a risk-weighted prevalence of a particular risk factor exposure. SEV values range from 0 to 1, with a value of 0 indicating no risk in a population and a value of 1 indicating a maximum risk. The GBD first computed the yearly rate of change in SEV on a logit scale for different locations, age groups, sexes, and previous years. Future rates of change were estimated using a weighted average of previous rates observed throughout the time series. Years closer to the projected year were given higher weights, indicating their greater influence on the estimation. Conversely, more distant years were assigned lower weights, implying their relatively lesser impact on the projected rates of change.

For predicting risk-deleted dementia prevalence, the GBD used linear regression models for males and females separately. The model included 5-year age groups, world region, and years of education as predictors. Years of education are assumed to be unchanged after the age of 25 and are held constant within a specific birth cohort based on location and sex.

In order to account for uncertainty, the GBD 2019 employed an additional method of conducting 1,000 draws at each calculation step. This approach enabled the propagation of uncertainty arising from different sources, including input data, correction for measurement errors, and estimates of nonsampling error. The resulting 95% uncertainty intervals were defined as the range between the 2.5th and 97.5th ordered values of the draws. For our analysis, we utilized the mean prevalence estimate derived from these 1,000 draws as the point estimate.

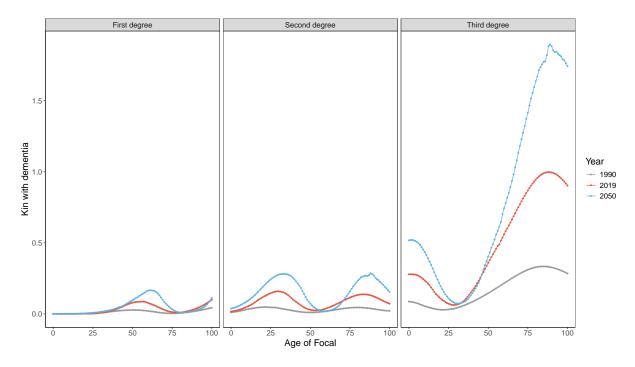
3 Uncertainty Interval

In our analysis, estimate uncertainty can arise from two sources: the projections of age-specific dementia prevalence and the projections of vital statistics. For our dementia prevalence projections, we use Nichols et al. (2022), which provide mean estimates as well as lower and upper bounds of the estimates. These bounds are not confidence intervals but uncertainty intervals that represent the 2.5th and 97.5th values of the ordered draws from Bayesian models. This uncertainty is reflected in our projections of total dementia cases, as shown in Figure 2.

For our vital statistics projections, we rely on the medium scenario projections from the UN's World Population Prospects (WPP) 2022. According to the WPP, the medium scenario "corresponds to the most likely population projection based on several thousand simulated future trends, each one based on distinct trajectories of fertility and mortality for individual countries and areas."

The WPP provides multiple fertility projection scenarios. We incorporate both low and high fertility scenario projections alongside the medium scenario estimates. The high fertility scenario projects a TFR that is 0.5 births above the medium scenario, while the low fertility scenario projects a TFR that is 0.5 births below the medium. This uncertainty is reflected in our 2050 kinship network projections, as shown in Figure 1.

The WPP only provides a single scenario for future mortality changes, which assumes a continued decline in death rates and an increase in life expectancy. We use this scenario in kinship projections.


Since our estimate of dementia caregiving burden involves both dementia prevalence and the size of the kinship network, extra consideration is required when calculating the lower and upper bounds. We combine low fertility estimates with high dementia prevalence to represent the lower bound, as this scenario reflects fewer younger generation kin members who could potentially serve as caregivers, alongside a high demand for caregiving from the older generation. In contrast, the upper bound combines high fertility with low dementia prevalence, representing a scenario with a larger younger generation of kin members and lower caregiving demands for the older generation. These uncertainties are now reflected in Figure 3 and Figure 5.

For the decomposition analysis and calculation of $DDR_{pop}(t)$, we use medium scenario projections for vital statistics and mean estimates for dementia prevalence throughout the analysis.

4 Replication Package

Link:

5 Figures and Tables

Fig. S1. Estimated Number of Kin with Dementia, by Degrees of Relatedness, as a Function of the Age of Focal in 1990, 2019, and 2050

Data sources: Institute for Health Metrics and Evaluation (IHME). Findings from the Global Burden of Disease (GBD) Study 2019. Seattle, WA: IHME, 2021; United Nations, Department of Economic and Social Affairs, Population Division (2022). World Population Prospects 2022 Revision, Online Edition; GDB 2019 Dementia Forecasting Collaborators (Nichols et al. 2022).

Notes: The figure shows an individual's numbers of first-degree kin, second-degree kin, and third-degree kin with dementia by age of the individual in 1990, 2019, and 2050, respectively. First-degree kin include children and parents; second-degree kin include grandchildren, grandparents, and siblings; and third-degree kin include great-grandparents, aunts, uncles, nieces, and nephews.

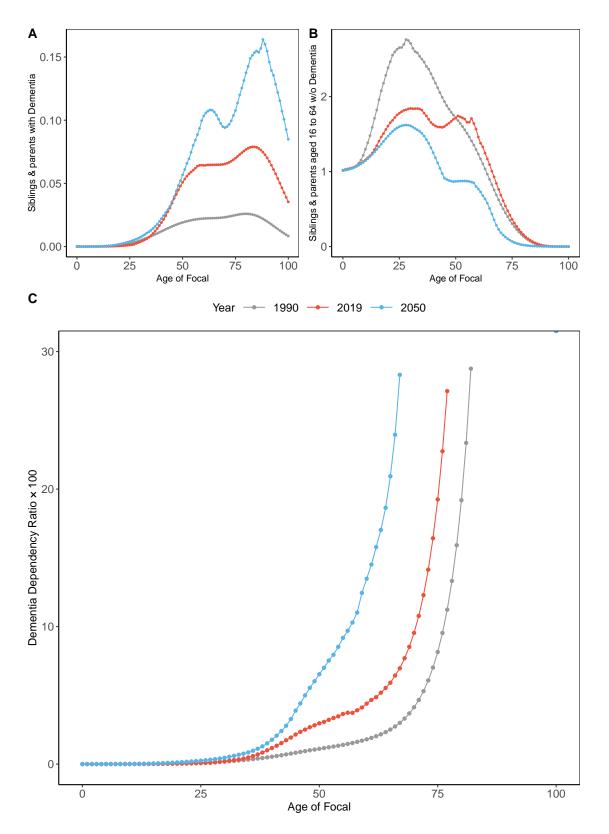
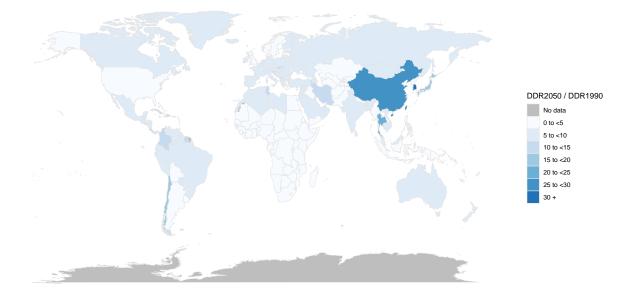



Fig. S2. (A) The Number of Parents with Dementia. (B) The Number of Siblings Aged 16–64 Without Dementia. (C) The Dementia Dependency Ratio (DDR(x)), restricted to

parents and siblings, as a Function of the Age of Focal in China in 1990, 2019, and 2050.

Data sources: Institute for Health Metrics and Evaluation (IHME). Findings from the Global Burden of Disease Study 2019. Seattle, WA: IHME, 2021; United Nations, Department of Economic and Social Affairs, Population Division (2022). World Population Prospects 2022 Revision, Online Edition.

Notes: These figures show the estimated number of siblings and parents with dementia, the number of siblings and parents aged 16-64 without dementia, and the estimated dementia dependency ratio (DDR) by the age of Focal in 1990, 2019, and 2050. The DDR refers to the proportion of siblings and parents with dementia to siblings and parents without dementia who are at risk for provide family care, conditioning on the survival of Focal. To calculate the DDR, the denominator is the number of siblings aged 16 to 64 without dementia, while the numerator is the number of parents with dementia, irrespective of their age. The mathematical definition of DDR is discussed in the Materials and Methods section.

Fig. S3. Change in the Population-Averaged Dementia Dependency Ratio DDR(pop) by Country and Region from 1990 to 2050, Limiting Kin Types to Parents and Siblings

Data sources: Institute for Health Metrics and Evaluation (IHME). Findings from the Global Burden of Disease (GBD) Study 2019. Seattle, WA: IHME, 2021; United Nations, Department of Economic and Social Affairs, Population Division (2022). World Population Prospects 2022 Revision, Online Edition; GDB 2019 Dementia Forecasting Collaborators (Nichols et al. 2022).

Notes: This figure presents a heat map of change in DDR(pop) by country from 1990 to 2050. As a robustness check, in this graph we limit the kin types to parents and siblings, conditioning on the survival of Focal. To calculate the DDR(x), the denominator is the number of siblings aged 16 to 64 without dementia, while the numerator is the number of parents and siblings with dementia, irrespective of their age. We apply the method used for estimating the DDR(x) index for China to other countries. The indexes draw on dementia data from GDB 2019 Dementia Forecasting Collaborators and data of fertility and mortality rates in the UN's 2022 Revision of World Population Prospects (United Nation 2022b). A darker blue color indicates a rapidly increasing dementia burden on kin, whereas a lighter blue color indicates a slowly increasing burden caused by dementia on kin over time.

Table S1. Data Source	es for Kinship and	Dementia Estimates
-----------------------	--------------------	--------------------

Data Source	Data Type	Sex	Year	Age Range
(1) Mortality, q_x				
UN's 2022 World Population Prospects	Survey record/Estimate	Female	1950-2021	0-100
UN's 2022 World Population Prospects	Medium variant	Female	2022-2050	0-100
(2) Fertility, f_x				
UN's 2022 World Population Prospects	Survey record/Estimate	Female	1950-2021	15-49
UN's 2022 World Population Prospects	Medium variant	Female	2022-2050	15–49
(3) Alzheimer's disease and other dementias				
GDB 2019 Dementia Forecasting Collaborators	Meta analysis/Estimate	Female	1990, 2019, 2050	0-100

Notes: The medium-variant projection refers to the median of several thousand distinct trajectories of each demographic component derived using the probabilistic model of the variability in changes over time based on the Population Division of the UN; The Global Burden of Disease (GBD) uses the Bayesian meta-regression tool to estimate prevalence rate, and provide the mean value out of 1,000 draws from their model. We used a revised dementia prevalence estimates and the 2050 projection directly from the GDB 2019 Dementia Forecasting Collaborators. Compared to the estimates from the GBD 2019 public database, the estimates we used also include dementia that is caused by other clinical diseases such as clinical stroke, Parkinson's disease, Down syndrome, and traumatic brain injury. See details in (Nichols et al. 2022). We use the mean-value estimation of dementia prevalence throughout our analysis. The input data sources for estimating dementia prevalence in China was derived from a meta-analysis of 43 peer-reviewed journal articles. Table S2. Expected Number of Kin in Named Type for a Randomly Selected Individual by Age and Year

Year Children 1990 0 2019 0 2050 0 Year Children 1990 0 2019 0 2050 0 2050 0 2019 0 2019 0 2019 0	dren Grandchildren 0 0 dren Grandchildren	en Great- orandchildren	.1 1.0	-	,			NI:0000/NIcmbonic	Cousins
		Er anacontation cut	Sıblings	Parents	Grandparents	Great- grandparents	Aunts/Uncles	IN leces/INepnews	
		0	0.98	2	3.50	2.20	8.00	0	8.66
		0	0.95	2	3.78	3.72	3.98	0	3.68
		0	0.73	2	3.82	4.30	3.29	0	2.42
				Focal's Age at 10	at 10				
		en Great- grandchildren	Siblings	Parents	Grandparents	Great- grandparents	Aunts/Uncles	Nieces/Nephews	Cousins
	0	0	2.47	1.96	2.71	0.68	8.05	0.21	18.59
	0	0	1.57	1.99	3.49	1.88	4.83	0.08	7.38
2050 0	0	0	1.23	1.99	3.64	2.38	3.46	0.02	3.80
				Focal's Age at 20	at 20				
Year Children	dren Grandchildren	en Great- grandchildren	Siblings	Parents	Grandparents	Great- grandparents	Aunts/Uncles	Nieces/Nephews	Cousins
1990 0.13	0	0	3.69	1.87	1.57	0.13	7.23	2.45	26.10
2019 0.07	0	0	1.79	1.96	2.82	0.47	6.53	0.45	12.35
2050 0.03	0	0	1.44	1.97	3.17	0.71	3.56	0.33	5.04
				Focal's Age at 30	at 30				
Year Children	dren Grandchildren	en Great- grandchildren	Siblings	Parents	Grandparents	Great- grandparents	Aunts/Uncles	Nieces/Nephews	Cousins
1990 1.78	0	0	4.21	1.65	0.69	0.01	6.25	6.37	30.3
2019 1.20	0	0	1.94	1.89	1.70	0.06	7.57	1.99	16.60
2050 0.58	0	0	1.61	1.93	2.33	0.09	3.75	1.09	6.25
				Focal's Age at 40	at 40				
Year Children	dren Grandchildren	en Great- grandchildren	Siblings	Parents	Grandparents	Great- grandparents	Aunts/Uncles	Nieces/Nephews	Cousins
1990 2.77	0.07	0	3.97	1.23	0.18	0	4.76	10.64	30.12
2019 1.67	0.01	0	2.60	1.70	0.50	0	6.78	4.40	21.70
2050 1.33	0	0	1.74	1.84	1.19	0	4.15	1.93	8.19

Ver Children Grandchildren Grandchildren Grandchildren Grandchildren Grandchildren Grandchildren Grandchildren Grandchildren NumechNacke NumechNacke						Focal's Age at 50	at 50				
408 279 0 3.83 0.68 0.02 3.05 1.40 1.40 1.3 0.96 0 1.16 0.05 0 4.70 7.11 1.3. 1.4. Focal's Age at 60 1.4. 4.70 7.11 1.3. Grandchildren Grandchildren Shlings Puens Grandpuens Grandpuens Mins/Uncles 7.11 1.42 7.08 0.07 3.06 0.22 0 2.71 9.18 1.67 1.26 0 0 2.21 0.01 0 2.51 9.18 2.09 1.175 0.94 3.80 0.22 0.01 0 2.51 9.18 2.09 1.175 0.94 Readitable Readitable 8.16 3.06 9.18 1.66 2.01 0.02 0.02 0.01 0.01 0 0.11 1.67 1.65 2.02 0.01 0.01 0.01 0.01 0.01 1.66	Year	Children	Grandchildren	Great- grandchildren	Siblings	Parents	Grandparents	Great- grandparents	Aunts/Uncles	Nieces/Nephews	Cousins
183 0.96 0 3.61 1.16 0.06 0 4.70 7.11 1.36 0.14 0 1.76 1.62 0.20 0 4.81 2.47 Children Grandshidren grandchildren grandchildren grandchildren grandchildren grandchildren grandchildren grandchildren 3.81 0.22 0 1.50 1.55 2.01 1.20 0.07 3.81 0.52 0 0 2.71 9.18 1.67 1.50 0.07 3.81 0.52 0 0 2.71 9.18 1.67 1.50 0.01 0.52 0.01 0 2.71 9.18 2.99 0.11 0.70 0.01 0 0 0.55 1.45 3.99 1.175 2.92 0.93 0 0 0 1.145 1.70 2.17 0.65 0.72 0.75 0.75 1.145 2.80 0.84	1990	4.08	2.79	0	3.58	0.68	0.02	0	3.05	14.06	27.72
1.36 0.14 0 1.76 1.62 0.20 0 4.81 2.47 1.13 Front's Age at 60 Front's Age at 60 AnnexUncles Niccen/Sephews 4.42 7.08 0.07 3.06 0.22 0 1.50 1.55 4.42 7.08 0.07 3.06 0.22 0 1.50 1.50 1.55 2.00 2.91 0 3.81 0.22 0 1.50 1.50 1.55 2.00 2.91 0 1.23 0.01 0 1.50 1.55 2.01 1.26 0 1.13 0.01 0 1.50 1.55 2.02 1.13 2.92 2.92 0.01 0 1.50 1.55 3.99 11.75 2.92 2.92 0.01 0 0.21 1.65 3.99 11.75 2.92 2.92 2.92 0.01 0 1.56 1.65 2.81 0.64	2019	1.83	0.96	0	3.61	1.16	0.06	0	4.70	7.11	25.70
Focal's Age at 60ChildrenGrandbindrenGrandbinentsGrandparentsGrandparentsGrandparentsGrandparentsGrandparentsNiescNephews4427.080.073.060.22001.5015.579.182002.9103.810.52002.719.189.181671.2603.810.520.0102.719.189.182001.1201.120.01002.719.18210GrandchildrenGrandchildren8108108109.120.0102.719.183.9911.752.920.030.010002.719.183.9911.752.920.030.0100003.172.870.040.070.070000003.9911.752.922.920.01000002.870.05000000003.911.490000000003.1115.490000000003.911.4900000000003.111.49000000000 </td <td>2050</td> <td>1.36</td> <td>0.14</td> <td>0</td> <td>1.76</td> <td>1.62</td> <td>0.20</td> <td>0</td> <td>4.81</td> <td>2.47</td> <td>11.89</td>	2050	1.36	0.14	0	1.76	1.62	0.20	0	4.81	2.47	11.89
ChildrenGrauchtildrenGrauchtildrenGrauchtildrenGrauchtildrenGrauchtildrenBunds/luclesNieceNephens4427.08003.060.2201.501.572002.9103.810.22001.591671.2601.831.120.0101.512011.2601.831.120.0102.719.181671.752.920.01002.719.182875.040.842.020.1100.221.171.162872.172.920.11002.171.171.172872.170.050.11002.171.171.172872.170.020.11001.151.1451702.170.270001.171.172872.170.270001.171.172872.170.270001.171.172811.170.050.11001.171.172811.170.050.11001.171.172811.180.050.11001.171.172811.171.171.171.171.171.172811.180.010001.161.163921.						Focal's Age	at 60				
	Year	Children	Grandchildren	Great- grandchildren	Siblings	Parents	Grandparents	Great- grandparents	Aunts/Uncles	Nieces/Nephews	Cousins
	1990	4.42	7.08	0.07	3.06	0.22	0	0	1.50	15.57	23.63
167 126 0 183 1.12 0.01 0 4.31 3.08 reduction Grandchildren Gread-reindren Gread-reindren Gread-reindren Sibilitys Parents Grandparents Grand-reindren Sibilitys Parents Grandparents Gread-reindren Sibilitys Sibilitys Parents Grandparents Grand-reindren Sibilitys Sibilitys Parents Grandparents Grandparents Grandparents Grandparents Grandparents Grandparents Grandparents Sibilitys Sib	2019	2.00	2.91	0	3.81	0.52	0	0	2.71	9.18	27.11
Focal's Age at 70 Focal's Age at 70 Children Graudchildren Standchildren Standchildren Standchildren Standchildren Nues/Uncles Niece/Nophows 399 11.75 2.92 2.28 0.03 0 0.52 15.17 399 11.75 2.92 2.28 0.03 0 0 5.17 Niece/Nophows 309 11.75 2.92 2.92 0.01 0 0 1.45 Niece/Nophows 317 0.50 2.17 0.57 0 0 1.45 1.45 170 2.17 0.55 2.17 0.27 0 0 1.45 170 2.17 0.55 2.17 0.27 0 1.45 2.11 15.49 1.49 Niesus Miss/Uncles Niesus/Niesus 3.11 15.49 1.44 Niesus Miss/Uncles Niesus/Niesus 3.15 16.9 2.84 1.44 1.43 Niesus/Niesus Niesus/Niesus<	2050	1.67	1.26	0	1.83	1.12	0.01	0	4.31	3.08	15.19
ChildrenGrad grandchildrenGrad grandchildrenGrad grandchildrenAuns/UnclesNieces/Nephews 3.99 11.75 2.92 2.28 0.03 0 0 0.52 15.17 2.87 5.04 0.84 3.20 0.11 0 0 0.52 1.145 2.87 5.04 0.84 3.20 0.11 0 0 0.52 1.145 2.87 2.17 0.52 0.11 0 0 1.15 1.145 2.17 0.55 2.17 0.27 0 0 0.11 0.52 2.17 0.56 0.11 0 0 0.11 0.12 0.11 2.17 1.549 1.264 1.34 0 0 0 0.11 1.376 3.71 15.49 1.264 1.34 0 0 0 0.11 1.376 3.70 2.69 1.264 1.34 0 0 0 0.11 1.364 3.76 7.69 5.84 0.01 0 0 0.01 0.61 1.364 1.79 2.69 1.264 1.264 0.01 0 0 0.11 1.364 1.71 1.69 5.84 0.01 0 0 0.01 0.61 1.657 1.74 1.74 1.264 1.264 1.146 1.164 1.164 1.74 1.164 1.164 1.164 1.164 1.164 1.164 0.164 <						Focal's Age	at 70				
3.90 11.75 2.92 2.28 0.03 0 0 0.52 2.87 5.04 0.84 3.20 0.11 0 0 1.15 2.87 5.04 0.84 3.20 0.11 0 0 1.15 1.70 2.17 0.05 2.17 0.27 0 0 2.17 1.70 $Cinidren$ $Grandchildren$ $Grandchildren$ $Grandchildren$ $Grandchildren$ 2.17 3.71 15.49 12.64 1.34 0 0 0 0 0.11 3.71 15.49 12.64 1.34 0 0 0 0.11 3.71 15.49 12.64 1.34 0 0 0 0.11 3.71 15.49 12.64 1.34 0 0 0 0.11 3.71 15.49 12.64 1.34 0 0 0 0.11 3.96 7.69 5.84 2.20 0 0 0 0.11 3.96 7.69 5.84 2.20 0 0 0 0.11 1.79 2.69 1.02 2.38 0.01 0 0 0.01 1.79 2.69 1.02 2.38 0.01 0 0 0.01 1.79 2.69 1.02 2.38 0.01 0 0.01 0.01 1.79 1.653 2.69 1.02 0.01 0.01 0.01 1.79 1.653 2	Year	Children	Grandchildren	Great- grandchildren	Siblings	Parents	Grandparents	Great- grandparents	Aunts/Uncles	Nieces/Nephews	Cousins
287 504 0.84 3.20 0.11 0 1.15 1.70 2.17 0.05 2.17 0.05 2.17 0.27 0 0 1.15 1.70 2.17 0.05 2.17 0.05 2.17 0.27 0 0 2.17 1.70 0.05 0.27 0 0 0 0 0 3.71 0.54 0.24 0.24 0 0 0 0 3.71 15.49 12.64 1.34 0 0 0 0 3.71 15.49 12.64 1.34 0 0 0.01 0 0.01 3.70 7.69 2.84 0.01 0 0 0.01 0.01 0.01 0.01 0.01 0.01 1.79 2.69 1.02 2.38 0.01 0 0.01 0.01	1990	3.99	11.75	2.92	2.28	0.03	0	0	0.52	15.17	18.14
1.70 2.17 0.05 2.17 0.27 0 0 2.17 $ -$	2019	2.87	5.04	0.84	3.20	0.11	0	0	1.15	11.45	24.14
Focal's Age at 80ChildrenGrandchildrenSiblingsParentsGrandparentsGrandparentsAunts/Uncles 3.71 15.49 12.64 1.34 0 0 0 0.11 3.71 15.49 12.64 1.34 0 0 0 0.11 3.96 7.69 5.84 2.20 0 0 0 0.11 3.96 2.69 1.02 2.38 0.01 0 0 0.31 1.79 2.69 1.02 2.38 0.01 0 0 0.61 1.71 1.02 2.38 0.01 0 0 0.61 1.71 1.02 2.38 0.01 0 0 0.61 1.71 1.65 2.816 0.75 0 0 0 0.01 1.88 3.45 1.13 0 0 0 0.01 0.01 1.88 3.42 1.77 0 0 0 0 0.01	2050	1.70	2.17	0.05	2.17	0.27	0	0	2.17	4.37	17.66
ChildrenGrandchildrengrandchildrengrandchildrengrandparentsgrandparentsgrandparentsgrandparentshuts/Uncles 3.71 15.49 12.64 1.34 0 0 0 0 0.11 3.96 7.69 5.84 2.20 0 0 0 0.11 1.79 2.69 1.02 2.38 0.01 0 0 0.31 1.79 2.69 1.02 2.38 0.01 0 0 0.61 1.79 2.69 1.02 2.38 0.01 0 0 0.61 1.79 2.69 1.02 2.38 0.01 0 0 0.61 1.79 2.69 1.02 2.38 0.01 0 0 0.61 1.79 2.69 1.02 2.816 0.91 0.01 0 0 0.61 0.11 0.75 0.01 0.01 0 0.61 0.01 0.61 1.88 3.42 1.77 0 0 0 0 0.01						Focal's Age	at 80				
3.71 15.49 12.64 1.34 0 0 0 0.11 13.76 3.96 7.69 5.84 2.20 0 0 0 0.1 13.64 1.79 2.69 1.02 2.38 0.01 0 0 0.61 6.67 1.79 2.69 1.02 2.38 0.01 0 0 0.61 6.67 1.74 2.69 1.02 2.38 0.01 0 0 0.61 6.67 1.74 6.67 1.02 2.38 0.01 0 0 0.61 6.67 1.74 6.67 1.02 2.38 0.01 0 0 0.61 13.64 1.74 6.67 1.02 2.38 0.01 0.01 0.61 1.67 1.8 16.53 28.16 0.55 0 0 0 0 0.01 1.6 4.04 9.47 12.68 1.13 0 0 0 0 0.01 1.65 1.88 3.45 1.77 0 0 0 0 0 0.01 1.05	Year	Children	Grandchildren	Great- grandchildren	Siblings	Parents	Grandparents	Great- grandparents	Aunts/Uncles	Nieces/Nephews	Cousins
3.96 7.69 5.84 2.20 0 0 0 0.31 13.64 1.79 2.69 1.02 2.38 0.01 0 0 0.61 6.67 1.79 2.69 1.02 2.38 0.01 0 0 0.61 6.67 1.79 2.69 1.02 2.38 0.01 0 0 0.61 6.67 1.71 0.11 0.11 0.61 0.61 0.61 1.64 1.8 $1.2.68$ 1.13 0 0 0 0.01 11.6 1.8 3.45 $1.2.68$ 1.17 0 0 0 0.05 1.70 1.8 3.42 1.77 0 0 0 0 0.11 8.30	1990	3.71	15.49	12.64	1.34	0	0	0	0.11	13.76	11.91
1.79 2.69 1.02 2.38 0.01 0 0 0.61 6.67 Children 0.15 0.53 0.55 0 0 0 0.01 0.01 11.6 0.16 $1.2.68$ 1.13 0 0 0 0 0.01 11.6 1.88 3.45 3.42 1.77 0 0 0 0.01 0.01 0.05	2019	3.96	7.69	5.84	2.20	0	0	0	0.31	13.64	17.98
ChildrenGrandchildrenFocal's Age at 90ChildrenGrandchildrenSiblingsParentsGrandparentsGrandparentsMuts/UnclesNiece/Nephews3.1516.5328.160.550000.0111.64.049.4712.681.1300000.0514.051.883.453.421.7700000.118.30	2050	1.79	2.69	1.02	2.38	0.01	0	0	0.61	6.67	16.61
Children Grad- grandchildren Grad- grandparents Grad- grandparents Aunts/Uncles Nieces/Nephews 3.15 16.53 28.16 0.55 0 0 0 11.6 3.15 16.53 28.16 0.55 0 0 0 01 11.6 4.04 9.47 12.68 1.13 0 0 0 00 11.6 1.88 3.45 3.42 1.77 0 0 0 0.01 14.05						Focal's Age	at 90				
3.15 16.53 28.16 0.55 0 0 0 0 11.6 4.04 9.47 12.68 1.13 0 0 0 0.05 14.05 1.88 3.45 3.42 1.77 0 0 0 0.11 8.30	Year	Children	Grandchildren	Great- grandchildren	Siblings	Parents	Grandparents	Great- grandparents	Aunts/Uncles	Nieces/Nephews	Cousins
4.04 9.47 12.68 1.13 0 0 0 0.05 14.05 1.88 3.45 3.42 1.77 0 0 0 0.11 8.30	1990	3.15	16.53	28.16	0.55	0	0	0	0.01	11.6	6.33
1.88 3.45 3.42 1.77 0 0 0 0.11 8.30	2019	4.04	9.47	12.68	1.13	0	0	0	0.05	14.05	10.92
	2050	1.88	3.45	3.42	1.77	0	0	0	0.11	8.30	13.38

Data sources: United Nations, Department of Economic and Social Affairs, Population Division (2022). World Population Prospects 2022 Revision, Online Edition.

Notes: The table presents the expected number of kin of various kinds for a Focal individual at ages 0, 10, 20, 30, 40, 50, 60, 70, 80, and 90 living in 1990, 2019, and 2050. The estimation details are described in the Methods section. This table corresponds to Figure 1 in the main text.

Table S3. Dementia Dependency Ratios and Change in Dementia Dependency Ratios by Country and Year

	D	Dementia I	Dependenc	cy Ratio ×	100	Fold	Change in	n DDRs
	1990	2019	2030	2040	2050	1990 to 2019	2019 to 2050	1990 to 2050
Afghanistan	0.28	0.36	0.41	0.49	0.64	1.28	1.80	2.31
Albania	0.80	1.66	2.39	3.80	5.97	2.08	3.61	7.49
Algeria	0.38	0.74	1.15	1.74	2.81	1.94	3.78	7.33
American Samoa	0.44	0.55	0.73	1.02	1.38	1.24	2.52	3.13
Andorra	1.64	2.88	3.60	5.20	7.56	1.76	2.62	4.61
Angola	0.36	0.36	0.38	0.43	0.51	1.02	1.39	1.42
Antigua and Barbuda	0.70	1.42	2.13	3.11	4.24	2.04	2.99	6.09
Argentina	1.11	1.74	1.93	2.33	3.01	1.57	1.73	2.72
Armenia	0.78	1.67	2.38	3.39	4.89	2.15	2.93	6.28
Australia	1.31	2.70	3.56	4.70	5.71	2.06	2.12	4.36
Austria	1.35	2.59	3.54	4.77	6.22	1.91	2.40	4.60
Azerbaijan	0.58	0.97	1.30	2.07	3.11	1.67	3.22	5.37
Bahamas	0.58	1.10	1.55	2.19	2.98	1.89	2.70	5.11
Bahrain	0.54	0.95	1.40	2.20	3.53	1.76	3.73	6.56
Bangladesh	0.28	0.46	0.70	1.07	1.66	1.68	3.57	5.99
Barbados	0.67	1.45	2.13	3.00	3.59	2.17	2.48	5.39
Belarus	1.40	1.99	2.43	3.21	4.46	1.42	2.24	3.19
Belgium	1.46	2.75	3.29	4.06	4.88	1.87	1.78	3.33
Belize	0.46	0.61	0.81	1.13	1.70	1.34	2.80	3.74
Benin	0.32	0.30	0.31	0.35	0.40	0.93	1.33	1.23
Bermuda	0.84	2.41	3.49	4.86	5.86	2.86	2.43	6.94
Bhutan	0.22	0.33	0.47	0.74	1.27	1.48	3.79	5.63
Bolivia (Plurinational State of)	0.33	0.45	0.52	0.67	0.89	1.34	2.00	2.68
Bosnia and Herzegovina	0.91	1.91	2.70	4.13	5.81	2.10	3.05	6.40
Botswana	0.35	0.40	0.48	0.64	0.90	1.14	2.24	2.55
Brazil	0.60	1.25	1.79	2.62	3.80	2.08	3.04	6.31
Brunei Darussalam	0.42	0.80	1.09	1.69	2.57	1.91	3.20	6.12
Bulgaria	1.37	2.15	2.54	3.29	4.25	1.57	1.97	3.11
Burkina Faso	0.28	0.26	0.27	0.31	0.37	0.91	1.42	1.30
Burundi	0.29	0.29	0.30	0.34	0.39	1.01	1.34	1.35
Côte d'Ivoire	0.24	0.26	0.28	0.33	0.41	1.06	1.57	1.67
Cabo Verde	0.27	0.58	0.83	1.30	2.13	2.12	3.68	7.79
Cambodia	0.30	0.51	0.68	0.94	1.30	1.74	2.53	4.41
Cameroon	0.34	0.29	0.29	0.32	0.39	0.86	1.36	1.16
Canada	1.58	3.05	4.45	5.97	7.22	1.93	2.36	4.57
Central African Republic	0.39	0.40	0.40	0.40	0.42	1.03	1.04	1.07
Chad	0.30	0.25	0.24	0.25	0.28	0.81	1.14	0.93

	D	ementia I	Dependenc	y Ratio ×	100	Fold	Change in	n DDRs
	1990	2019	2030	2040	2050	1990 to 2019	2019 to 2050	1990 to 2050
Chile	0.59	1.89	2.61	3.72	5.24	3.18	2.77	8.82
China	0.41	1.69	2.70	4.67	7.21	4.17	4.27	17.81
China, Taiwan Province of China	0.48	1.89	3.43	5.85	9.11	3.94	4.83	19.06
Colombia	0.43	0.97	1.44	2.17	3.15	2.23	3.26	7.29
Comoros	0.30	0.29	0.32	0.39	0.48	0.97	1.63	1.58
Congo	0.42	0.40	0.42	0.49	0.60	0.96	1.49	1.43
Costa Rica	0.57	1.26	1.76	2.61	3.88	2.20	3.09	6.79
Croatia	1.41	2.74	3.51	4.38	5.47	1.95	2.00	3.89
Cuba	0.74	1.51	2.10	3.18	4.20	2.04	2.78	5.66
Cyprus	0.81	1.77	2.55	3.44	4.59	2.18	2.59	5.64
Czechia	1.28	2.78	3.64	4.61	5.60	2.18	2.01	4.39
Dem. People's Republic of Korea	0.54	1.00	1.35	1.72	2.26	1.83	2.27	4.16
Democratic Republic of the Congo	0.37	0.41	0.40	0.41	0.44	1.09	1.08	1.18
Denmark	1.54	2.27	2.98	3.69	3.96	1.47	1.75	2.56
Djibouti	0.32	0.36	0.44	0.57	0.78	1.11	2.19	2.42
Dominica	0.54	0.73	1.11	1.67	2.35	1.35	3.24	4.38
Dominican Republic	0.34	0.87	1.22	1.66	2.30	2.54	2.65	6.73
Ecuador	0.39	0.96	1.29	1.84	2.64	2.44	2.75	6.72
Egypt	0.64	0.72	0.82	1.10	1.51	1.14	2.08	2.37
El Salvador	0.35	0.81	1.10	1.55	2.25	2.32	2.78	6.45
Equatorial Guinea	0.38	0.39	0.41	0.48	0.57	1.04	1.44	1.51
Eritrea	0.28	0.36	0.43	0.52	0.65	1.31	1.79	2.35
Estonia	1.57	2.84	3.58	4.33	5.56	1.82	1.96	3.55
Eswatini	0.31	0.35	0.36	0.46	0.60	1.11	1.74	1.94
Ethiopia	0.28	0.33	0.39	0.47	0.61	1.17	1.85	2.16
Fiji	0.31	0.50	0.63	0.76	0.94	1.60	1.87	2.99
Finland	1.20	3.03	3.99	4.89	5.42	2.52	1.79	4.51
France	1.32	3.27	3.98	5.02	5.92	2.48	1.81	4.49
Gabon	0.63	0.50	0.53	0.63	0.80	0.80	1.58	1.26
Gambia	0.32	0.33	0.32	0.35	0.42	1.02	1.27	1.30
Georgia	1.15	1.70	1.99	2.49	3.26	1.48	1.92	2.84
Germany	1.42	3.03	4.16	5.19	6.44	2.13	2.13	4.54
Ghana	0.29	0.33	0.39	0.49	0.64	1.15	1.91	2.20
Greece	1.50	2.71	3.26	4.16	5.67	1.80	2.10	3.78
Greenland	0.45	1.22	1.83	2.65	3.23	2.68	2.65	7.10
Grenada	0.48	0.94	1.27	1.68	2.34	1.95	2.50	4.88
Guam	0.45	1.47	2.12	2.79	3.44	3.23	2.34	7.57

	E	Dementia I	Dependenc	cy Ratio ×	100	Fold	Change in	1 DDRs
	1990	2019	2030	2040	2050	1990 to 2019	2019 to 2050	1990 to 2050
Guatemala	0.34	0.64	0.76	1.04	1.50	1.89	2.33	4.40
Guinea	0.34	0.33	0.34	0.37	0.44	1.00	1.31	1.30
Guinea-Bissau	0.34	0.30	0.29	0.34	0.40	0.86	1.33	1.15
Guyana	0.31	0.65	0.89	1.20	1.55	2.08	2.39	4.97
Haiti	0.34	0.36	0.41	0.49	0.62	1.07	1.74	1.85
Honduras	0.30	0.47	0.62	0.89	1.29	1.54	2.76	4.25
Hungary	1.38	2.49	3.04	3.77	4.62	1.80	1.85	3.34
Iceland	1.22	2.09	2.65	3.52	4.39	1.72	2.09	3.60
India	0.28	0.46	0.60	0.84	1.20	1.64	2.59	4.25
Indonesia	0.40	0.59	0.76	1.05	1.49	1.50	2.51	3.76
Iran (Islamic Republic of)	0.45	0.85	1.34	2.20	3.93	1.88	4.61	8.65
Iraq	0.56	0.52	0.60	0.75	0.98	0.94	1.87	1.76
Ireland	0.81	1.63	2.18	3.16	4.38	2.01	2.69	5.40
Israel	0.85	1.73	2.09	2.51	2.94	2.05	1.70	3.48
Italy	1.71	3.66	4.70	6.35	8.22	2.15	2.24	4.82
Jamaica	0.54	0.61	0.78	1.18	1.82	1.13	2.98	3.37
Japan	1.31	5.77	7.41	9.07	10.21	4.42	1.77	7.82
Jordan	0.40	0.63	0.87	1.29	1.95	1.59	3.10	4.93
Kazakhstan	0.70	1.01	1.25	1.57	1.94	1.45	1.91	2.77
Kenya	0.34	0.37	0.41	0.49	0.65	1.08	1.75	1.90
Kiribati	0.32	0.43	0.51	0.61	0.74	1.33	1.71	2.28
Kuwait	0.54	1.00	1.56	2.86	5.07	1.83	5.09	9.33
Kyrgyzstan	0.59	0.74	0.89	1.15	1.53	1.26	2.06	2.60
Lao People's Democratic Republic	0.32	0.39	0.51	0.69	1.00	1.24	2.56	3.16
Latvia	1.68	2.50	2.98	3.44	4.33	1.49	1.73	2.58
Lebanon	0.53	1.42	2.12	3.26	4.70	2.67	3.30	8.81
Lesotho	0.44	0.41	0.41	0.46	0.58	0.93	1.42	1.33
Liberia	0.25	0.28	0.29	0.34	0.40	1.11	1.44	1.60
Libya	0.44	0.63	0.85	1.27	2.07	1.44	3.29	4.74
Lithuania	1.50	2.60	3.28	3.99	4.98	1.73	1.91	3.32
Luxembourg	1.36	2.35	3.01	3.80	4.63	1.72	1.97	3.40
Madagascar	0.26	0.37	0.42	0.53	0.65	1.43	1.76	2.52
Malawi	0.38	0.39	0.40	0.46	0.57	1.02	1.47	1.50
Malaysia	0.38	0.79	1.16	1.67	2.42	2.08	3.07	6.40
Maldives	0.37	0.55	0.85	1.37	2.52	1.49	4.57	6.82
Mali	0.23	0.26	0.26	0.28	0.31	1.09	1.23	1.34
Malta	0.71	2.71	4.24	5.55	7.02	3.83	2.59	9.92

	D	ementia I	Dependenc	y Ratio ×	100	Fold	Change in	n DDRs
	1990	2019	2030	2040	2050	1990 to 2019	2019 to 2050	1990 to 2050
Marshall Islands	0.28	0.33	0.42	0.57	0.77	1.19	2.36	2.80
Mauritania	0.26	0.29	0.32	0.38	0.48	1.11	1.63	1.82
Mauritius	0.42	1.23	1.93	2.89	3.87	2.91	3.14	9.13
Mexico	0.48	0.76	0.96	1.40	2.08	1.58	2.73	4.31
Micronesia (Fed. States of)	0.33	0.50	0.65	0.88	1.21	1.50	2.43	3.64
Mongolia	0.34	0.58	0.93	1.44	2.40	1.70	4.15	7.06
Montenegro	1.39	2.13	2.93	3.88	4.90	1.54	2.30	3.54
Morocco	0.41	0.70	1.08	1.71	2.72	1.71	3.91	6.69
Mozambique	0.30	0.29	0.30	0.36	0.42	0.98	1.46	1.42
Myanmar	0.34	0.49	0.64	0.88	1.19	1.43	2.43	3.46
Namibia	0.40	0.49	0.49	0.58	0.71	1.22	1.46	1.79
Nepal	0.27	0.37	0.46	0.62	0.91	1.36	2.44	3.33
Netherlands	1.39	2.75	3.66	4.81	5.33	1.98	1.94	3.84
New Zealand	1.12	2.40	3.44	4.72	5.87	2.14	2.45	5.23
Nicaragua	0.33	0.58	0.84	1.22	1.80	1.80	3.07	5.52
Niger	0.21	0.28	0.28	0.29	0.31	1.31	1.14	1.49
Nigeria	0.27	0.23	0.23	0.25	0.29	0.86	1.25	1.07
North Macedonia	0.89	1.71	2.33	3.46	4.78	1.91	2.79	5.34
Northern Mariana Islands	0.40	0.92	1.41	2.30	3.31	2.32	3.60	8.35
Norway	1.60	2.44	3.04	3.99	4.69	1.52	1.92	2.93
Oman	0.58	0.67	0.86	1.24	2.08	1.17	3.09	3.62
Pakistan	0.27	0.31	0.35	0.42	0.53	1.14	1.70	1.94
Panama	0.56	1.24	1.75	2.40	3.26	2.20	2.63	5.78
Papua New Guinea	0.33	0.37	0.43	0.53	0.69	1.11	1.88	2.08
Paraguay	0.48	0.94	1.16	1.51	1.99	1.95	2.13	4.15
Peru	0.33	0.75	1.04	1.50	2.19	2.26	2.94	6.64
Philippines	0.31	0.53	0.68	0.89	1.15	1.69	2.16	3.65
Poland	1.22	2.68	3.61	4.74	6.22	2.19	2.32	5.08
Portugal	1.10	2.39	3.26	4.54	6.28	2.16	2.63	5.69
Puerto Rico	0.89	2.06	3.13	4.48	6.10	2.32	2.96	6.88
Qatar	0.49	0.79	1.22	1.99	3.40	1.61	4.32	6.95
Republic of Korea	0.66	1.82	3.27	5.67	9.55	2.73	5.26	14.3
Republic of Moldova	1.01	1.25	1.55	2.04	2.67	1.24	2.13	2.64
Romania	1.10	2.08	2.63	3.54	4.73	1.89	2.27	4.29
Russian Federation	1.37	2.00	2.53	3.23	4.26	1.45	2.13	3.10
Rwanda	0.25	0.25	0.31	0.42	0.57	0.99	2.32	2.29
Saint Lucia	0.42	0.62	0.90	1.44	2.38	1.46	3.84	5.60

	Γ	Dementia I	Dependenc	y Ratio ×	100	Fold	Change in	n DDRs
	1990	2019	2030	2040	2050	1990 to 2019	2019 to 2050	1990 to 2050
Saint Vincent and the Grenadines	0.54	0.99	1.24	1.87	2.75	1.85	2.77	5.12
Samoa	0.29	0.52	0.64	0.83	1.05	1.82	2.02	3.67
Sao Tome and Principe	0.29	0.36	0.42	0.52	0.64	1.22	1.79	2.18
Saudi Arabia	0.46	0.69	1.05	1.64	2.68	1.49	3.89	5.78
Senegal	0.25	0.30	0.34	0.44	0.58	1.20	1.94	2.34
Serbia	1.28	2.45	2.99	3.82	4.72	1.92	1.93	3.70
Seychelles	0.49	0.98	1.32	1.91	2.75	2.00	2.80	5.58
Sierra Leone	0.34	0.27	0.29	0.33	0.41	0.82	1.50	1.22
Singapore	0.49	2.11	4.35	8.02	11.57	4.30	5.49	23.60
Slovakia	1.14	2.17	3.07	4.27	5.77	1.91	2.66	5.08
Slovenia	1.36	3.39	4.50	5.81	7.58	2.49	2.23	5.56
Solomon Islands	0.31	0.38	0.44	0.54	0.70	1.21	1.85	2.25
Somalia	0.28	0.30	0.30	0.32	0.34	1.07	1.12	1.19
South Africa	0.40	0.74	0.87	1.07	1.36	1.85	1.83	3.40
South Sudan	0.25	0.27	0.29	0.33	0.39	1.09	1.44	1.57
Spain	1.62	2.65	3.38	4.76	6.96	1.64	2.63	4.30
Sri Lanka	0.67	1.15	1.67	2.40	3.29	1.71	2.86	4.91
State of Palestine	0.38	0.59	0.76	1.03	1.44	1.53	2.46	3.77
Sudan	0.40	0.53	0.63	0.77	0.92	1.32	1.74	2.29
Suriname	0.30	0.70	1.04	1.44	1.89	2.36	2.70	6.38
Sweden	1.76	2.58	3.08	3.70	4.08	1.47	1.58	2.32
Switzerland	1.64	3.10	4.04	5.17	6.14	1.89	1.98	3.75
Syrian Arab Republic	0.45	0.64	0.78	1.09	1.49	1.40	2.34	3.28
Türkiye	0.92	1.34	1.91	2.80	4.16	1.46	3.10	4.54
Tajikistan	0.51	0.55	0.62	0.85	1.21	1.08	2.19	2.37
Thailand	0.49	1.52	2.63	4.40	7.02	3.08	4.60	14.18
Timor-Leste	0.25	0.39	0.45	0.53	0.67	1.57	1.71	2.67
Togo	0.24	0.24	0.27	0.32	0.37	1.00	1.56	1.56
Tonga	0.38	0.59	0.70	0.87	1.09	1.56	1.86	2.90
Trinidad and Tobago	0.46	1.11	1.75	2.51	3.57	2.44	3.21	7.82
Tunisia	0.49	1.17	1.70	2.54	4.03	2.39	3.43	8.21
Turkmenistan	0.48	0.63	0.78	1.07	1.49	1.30	2.36	3.08
Uganda	0.29	0.23	0.23	0.27	0.34	0.77	1.52	1.17
Ukraine	1.51	2.09	2.59	3.36	4.57	1.38	2.19	3.02
United Arab Emirates	0.49	0.77	1.16	1.88	3.32	1.58	4.29	6.76
United Kingdom	1.30	2.10	2.64	3.35	4.04	1.62	1.93	3.12
United Republic of Tanzania	0.34	0.39	0.42	0.50	0.61	1.15	1.58	1.82

	D	ementia I	Dependenc	y Ratio ×	100	Fold	Change in	n DDRs
	1990	2019	2030	2040	2050	1990 to 2019	2019 to 2050	1990 to 2050
United States of America	1.81	2.99	3.96	5.06	5.87	1.65	1.96	3.25
Uruguay	1.51	2.33	2.62	3.15	4.09	1.55	1.76	2.72
Uzbekistan	0.56	0.65	0.82	1.14	1.66	1.16	2.54	2.95
Vanuatu	0.30	0.47	0.55	0.67	0.87	1.56	1.85	2.88
Venezuela (Bolivarian Republic of)	0.42	0.84	1.06	1.42	1.84	2.01	2.19	4.40
Vietnam	0.54	1.01	1.38	2.00	2.99	1.88	2.97	5.58
Yemen	0.50	0.43	0.45	0.54	0.74	0.87	1.71	1.48
Zambia	0.34	0.27	0.28	0.34	0.44	0.80	1.62	1.30
Zimbabwe	0.35	0.38	0.39	0.47	0.57	1.10	1.48	1.62

Data sources: Institute for Health Metrics and Evaluation (IHME). Findings from the Global Burden of Disease (GBD) Study 2019. Seattle, WA: IHME, 2021; United Nations, Department of Economic and Social Affairs, Population Division (2022). World Population Prospects 2022 Revision, Online Edition; GDB 2019 Dementia Forecasting Collaborators (Nichols et al. 2022).

Notes: The table presents dementia dependency ratios (DDRs) for 195 countries and territories in 1990, 2019, 2030, 2040, and 2050 and changes in DDRs between years. We measure the DDR by the ratio of kin with dementia to kin without dementia in working ages (16–64). The DDR can be interpreted as a measure of the possible caregiving burden that kin with dementia place on kin without dementia in working ages. We estimate the DDR for each age group and then weight it by the age distribution of the total population in the observed year to derive the overall burden at the population level.

References

- Caswell, Hal. 2019. "The Formal Demography of Kinship: A Matrix Formulation." *Demo*graphic Research 41:679–712.
 - ——. 2020. "The Formal Demography of Kinship II: Multistate Models, Parity, and Sibship." Demographic Research 42:1097–1144.
 - ——. 2022. "The Formal Demography of Kinship IV: Two-sex Models and Their Approximations." *Demographic Research* 47:359–396.
- Caswell, Hal, and Xi Song. 2021. "The Formal Demography of Kinship III: Kinship dynamics with time-varying demographic rates." *Demographic Research* 45:517–546.
- Flaxman, Abraham D, Theo Vos, and Christopher JL Murray. 2015. "An integrative metaregression framework for descriptive epidemiology."
- GBD 2019 Collaborators. 2021. "Global mortality from dementia: Application of a new method and results from the Global Burden of Disease Study 2019." *Alzheimer's & Dementia: Translational Research & Clinical Interventions* 7 (1): e12200.
- GBD 2019 Dementia Collaborators and others. 2021. "The burden of dementia due to Down syndrome, Parkinson's disease, stroke, and traumatic brain injury: a systematic analysis for the Global Burden of Disease Study 2019." *Neuroepidemiology* 55 (4): 286–296.
- Nichols, Emma, Jaimie D Steinmetz, Stein Emil Vollset, Kai Fukutaki, Julian Chalek, Foad Abd-Allah, Amir Abdoli, Ahmed Abualhasan, Eman Abu-Gharbieh, Tayyaba Tayyaba Akram, et al. 2022. "Estimation of the global prevalence of dementia in 2019 and fore-casted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019." *The Lancet Public Health* 7 (2): e105–e125.
- Nichols, Emma, Cassandra EI Szoeke, Stein Emil Vollset, Nooshin Abbasi, Foad Abd-Allah, Jemal Abdela, Miloud Taki Eddine Aichour, Rufus O Akinyemi, Fares Alahdab, Solomon W Asgedom, et al. 2019. "Global, regional, and national burden of Alzheimer's disease and other dementias, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016." *The Lancet Neurology* 18 (1): 88–106.
- United Nation. 2022a. World Population Prospects 2022: Methodology of the United Nations population estimates and projections. United Nations, Department of Economic / Social Affairs, Population Division.
- _____. 2022b. World Population Prospects: The 2022 Revision. United Nations, New York.