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Abstract

The frequency and intensity of heat waves are increasing as the earth’s climate warms,
but how these trends translate to changes in children’s ambient heat exposure is not well
established. Existing studies often measure heat exposure using person-time units, which
overlook variations in risk levels and exposure durations. Our study addresses this gap by
developing a double-dual-distributional (DDD) framework to assess heat exposure among
250 million children in China from 1990 to 2020. We found that children’s average annual
exposure to moderate or stronger heat stress increased by 238 hours, and the proportion
experiencing over 18 weeks of such stress more than doubled. This framework highlights
that both rising temperatures and shifts in child population distribution contribute to in-
creased heat exposure, offering new insights for mitigating climate-related risks to chil-
dren’s health.
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1 Introduction

Extreme-heat exposure is a significant and growing threat to human health and welfare (Car-
leton and Hsiang 2016; Ebi et al. 2021; Gasparrini et al. 2015; Kovats and Hajat 2008; Mora
et al. 2017), with research increasingly highlighting its disproportionate impacts on vulnerable
populations (Harrington et al. 2016; Hsu et al. 2021; Li et al. 2016; Mitchell and Chakraborty
2015; Xi et al. 2024). Children are particularly susceptible to the detrimental effects of heat
exposure because of their lower ability to self-thermoregulate, impaired thirst sensation and
impaired glomerular filtration rates(Connon and Dominelli 2022a, 2022b; Park, Behrer, and
Goodman 2021; Prentice et al. 2024; Zivin and Shrader 2016). Studies have shown that extreme
heat directly impacts children by undermining their nutrition (Baker and Anttila-Hughes 2020),
impairing cognitive and skill development (Park, Behrer, and Goodman 2021), and escalating
rates of heat-related illnesses and mortality (Helldén et al. 2021; Zivin and Shrader 2016). The
negative effects of heat exposure can begin as early as the prenatal stage (Edwards, Saunders,
and Shiota 2003). Research has linked high temperatures to increased instances of preterm
births and low birth weights (Grace et al. 2015; Liu et al. 2022; Ren et al. 2023). Additionally, ex-
treme heat indirectly affects children by exacerbating droughts and associated food insecurity
(Chavez et al. 2015; Cooper et al. 2019; Sun et al. 2024), intensifying tropical disasters (Grin-
sted, Moore, and Jevrejeva 2013; Walsh et al. 2016), facilitating the spread of infectious diseases
(Mahon et al. 2024; Mora et al. 2022; Onozuka and Hashizume 2011; Xu, Liu, et al. 2014) , and
heightening the risk of violent conflicts (Akresh 2016; Hsiang, Burke, and Miguel 2013).
Climatic change has both prolonged and intensified extreme-heat exposures (Jones et al. 2015;

Li and Zha 2020; Sun et al. 2022; Sun et al. 2014; Tuholske et al. 2021). Projections suggest a
significant rise in the burden of heat exposure on populations, a trend attributed to both cli-
matic changes and the increased populations exposed to these changes (Jones et al. 2018; Liu
etal. 2017). Yet, only a few studies focus on measuring exposure to heat among the child popu-
lation despite the great vulnerability of children to heat exposure (UNICEF 2021, 2022). While
UNICEF 2022 offers one form of evaluation of child heat exposure, their analysis presents lim-
itations in using nationally aggregated population data. Our contribution in comparison is the
explicit use of intra-national population distribution data. Further, while UNICEF considers
different climate scenarios, their analysis is aggregated at the national level, leaving out cru-

cial information reflective of the varied climate situations occurring throughout the more than



3,000-mile-wide landscape of China. Despite the substantial research on the effects of extreme
heat on children, no study has documented population-level changes in the share of children
exposed to extreme heat in recent decades. In addition, the prevalent approach in studies
that measure general population heat burdens is to measure the total burden in person-time
units, calculated by multiplying the total population by the time that the average person expe-
riences thresholds of heat exposures (Jones et al. 2015; Liu et al. 2017; Sun et al. 2022; Tuholske
et al. 2021), while overlooking the distribution of population experiencing heat exposures of
varying risk levels and diverse durations.

Using the case of China—home to approximately 249.9 million children ages 0-14 in 2020
(National Bureau of Statistics of China 2021)—this paper provides the first empirical evidence
on how heat exposure for children has been changing in recent decades at a population level.
We accomplished this by linking county-level child-population data to the hourly Universal
Thermal Climate Index (UTCI), a bioclimatic heat index for assessing the physiological comfort
of the human body (Brode et al. 2012; Jendritzky, Dear, and Havenith 2012; Jendritzky and
Hoppe 2017), across two censuses spanning 30 years (1990-2020).

We developed a convenient, low-data-demand framework for measuring the share of chil-
dren at risk of extreme-heat exposure. Using what we call the double-dual-distributional (DDD)
framework, we measure population-level child-heat-exposure changes by jointly considering
two types of geospatial and temporal distributions—that of temperature and that of child
population—and two types of temperature-exposure thresholds—for temperature (intensity)
and time (duration). In this framework, we compute a Share of Time for the Average Child (STAC)
statistic, measuring the share of time exposed to ambient extreme temperature for the aver-
age child at any given temperature threshold, and a Share Exposed by Intensity and Duration
Thresholds (SEIDT) statistic, measuring the share of children exposed to extreme temperature
by differing temperature (intensity) and time (duration) thresholds.

We found substantial increases in the average heat-stress exposure for children and the
share of children at risk. Specifically, the average child was exposed to moderate or higher
levels of heat stress for an additional 238 hours in 2020 in comparison to 1990. The share of
children subjected to over 18 weeks per year of such heat stress more than doubled, increasing
from 6.7% to 13.7%. We also found that approximately half of the overall change in child heat-
stress exposure between 1990 and 2020 was driven by heat increases and the rest was driven

by cross-location shifts in the child population towards locations that had higher heat stress,
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illustrating the importance of both heat patterns and child population distributions. Finally, we
highlighted significant regional disparities: In Eastern China, China’s most-developed region,
there was a marked increase in the duration of children’s heat exposure from 1990 to 2020, even
though the exposure levels were already high in 1990. Conversely, the Central region, which
had comparable exposure levels as the Eastern region in 1990, experienced only a minimal

increase in aggregate child-heat exposure from 1990 to 2020.

2 Methods and Data

Methods. In this section, we summarize our double-dual-distributional (DDD) framework for
measuring child population at risk of heat exposure. Within a particular span of time in a
region, our DDD framework develops two statistics for heat-exposure risks building on two
types of distributions and two types of thresholds. The two distributions are the distribution of
location-specific temperature and the distribution of location-specific population groups (e.g.,
children). The two thresholds are temperature thresholds (intensity of exposure) for extreme-
heat exposure and time thresholds (duration of exposure) for share of time exposed to extreme
heat. The first risk statistic, STAC, captures the risk of extreme heat exposure facing the av-
erage child, measured in units of share of time the average child is exposed to extreme heat in a
particular period. The second risk statistic, SEIDT, captures the distribution of risk among chil-
dren, measured in units of the share of child population exposed to extreme heat by different intensity
and durations thresholds. While the overall framework allows for the incorporation of additional
heat-exposure dimensions—such as the length of specific heat spells—that would require di-
viding children into more granular cells of exposure experiences. Therefore, we focused on
heat-intensity and overall-time-duration as two first-order dimensions of heat-exposure expe-
riences.

Existing studies that consider population heat exposures have computed changes in heat
exposure in total person-time units for a particular region or country. The person-days of heat
exposure in a place at time t can be computed, for example, by multiplying the days during
which the maximum temperature exceeds a threshold level with the total population residing
in a place at time t. Aggregate person-time statistics have two limitations. First, when com-
paring exposures over time, aggregate person-time statistics will capture changes in aggregate

population size over time in addition to changes in average heat exposure burdens. As coun-



tries have experienced diverse patterns of declining and increasing child populations in recent
decades(Hannum, Kim, and Wang 2024), the resultant person-time estimates may not reflect
average child heat-exposure experiences. Second, the person-time aggregate provides a single
statistic of exposure for a region or country, overlooking the within-region or within-country
heterogeneities in ambient exposure changes across populations residing in locations with dif-
fering climatic-change experiences. In addition to considering both climatic and population
distributions, as done in person-time statistics, our DDD framework captures heterogeneities
across time and space by measuring changes in the percentages of children experiencing dif-
ferent intensities of heat stress (temperature thresholds) for different durations over time (time
thresholds).

In the closest-related work, UNICEF estimated for each country the number of children at
risk of heat exposure based on the aggregate national population share of children in 2020(UNICEF
2022). Our framework is the first to compute population-level distributional changes in heat
exposure for children over time. By providing—for the first time and in a large economy—
measurements on changes in the shares of children at risk of the double-thresholds of heat
exposure, our framework and empirical results complement and extend existing research that
has shown negative effects of heat exposure on children.

We implemented our framework in the setting of China between 1990 and 2020. In this em-
pirical application, we considered each span of time as one year, we approximated continuous-
ambient-temperature exposures based on hourly estimates of temperature, and we approx-
imated fine-grained measures of locations with counties (3rd level administrative units) in
China. For the exposure-intensity thresholds, we considered a range of UTCI thresholds but
focused our analysis on key thresholds for extreme-heat commonly used in the literature. For
exposure-duration thresholds, we considered different shares of time during the course of a
year that a child is exposed to temperatures above the intensity-thresholds considered. Our
method is also straight-forward to implement in other settings where tabular population data

at a relatively fine-grained level and location-specific climate data are available.

Data. To measure heat, we used the fifth generation of the European Centre for Medium-
Range Weather Forecasts (ECMWF) atmospheric reanalyses of the global climate: the ERA5-
HEAT dataset (Napoli 2020). ERA5-HEAT provides hourly data on UTCI with a spatial resolu-

tion of 0.25 degrees. The UTCI index provides an integrative measure of the perceived thermal
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stress on the human body, taking into account factors such as air temperature, humidity, wind
speed, and radiant heat (Brode et al. 2012; Jendritzky, Dear, and Havenith 2012; Jendritzky
and Hoppe 2017). When UTCI is between 26 °C and 32 °C, it indicates moderate-heat stress
on the human body, signifying warm conditions where individuals may start to feel uncom-
fortable, especially if engaging in physical activity. As the UTCI value increases, the level of
thermal stress on the human body intensifies. UTCI values between 32 °C and 38 °C indicate
strong-heat stress, whereas UTCI values between 38 °C and 46 °C indicate very-strong-heat
stress (Brode et al. 2012). We utilized these UTCI stress categories in this study.

For population data, we utilized Chinese-census data for the years 1990 and 2020 (All China
Market Research Ltd 2022; Beijing Hua tong ren shi chang xin xi you xian ze ren gong si
2005a, 2005b; China Data Lab 2020). County-level child population data and county-level
administrative boundary files were extracted and used to construct ages 0-14 populations by
county. For regional analysis, we considered the child population and UTCI distributions
within each one of the four recognized economic regions of China (National Bureau of Statistics

of China 2011).

3 Results

Increase in the Average Share of Time Exposed to Heat for Children (STAC). The three-
colored backgrounds in Figure 1 reflect the heat-stress categories associated with different
UTCI thresholds. This figure depicts the percentage-point changes (Panel a) and percentage changes
(Panel b) in the STAC statistics, which measure the average share of time in ambient-heat stress
for children from 1990 to 2020 using three different within-year time frames: all annual hours,
daytime hours (6 a.m.—10 p.m.), and April-to-September hours as the hot months of the year.
Across the three time-frame specifications, children’s shares of time in heat stress increased in
China from 1990 to 2020 across all UTCI heat thresholds. The largest percentage-point change
(Figure 1 Panel a) occurred when considering only hours in hot months, followed by daytime
hours, and then all annual hours. The percentage changes (Figure 1 Panel b) largely over-
lapped across the three time-frame specifications.

When all hours were considered, an average child in China experienced 20.09% of her total
hours in 1990 at-or-above 26 °C UTCI. By 2020, this percentage increased to 22.8%, represent-

ing a 2.7 percentage-point (Figure 1 Panel a) and 13.5% increase in annual average exposure



duration (Figure 1 Panel b), which corresponded to an average increase over 30 years of 238
hours of additional moderate-or-stronger heat-stress exposure.

Across all heat-stress thresholds, children’s average shares of time at risk of heat stress
increased. While the percentage-point increases were smaller at higher-heat thresholds, the
percentage increases in the average child shares of time exposed to UTCI thresholds between
26 °C to 40 °C were similar and ranged between 14% and 18%. For example, the average du-
ration of children’s exposure to UTCI at-or-above 32 °C increased by 1.1 percentage points,
reflecting a 14.7% rise as compared to the levels observed in 1990. These results also indi-
cated that approximately 40% (calculated as 1 — 2211 ~ 0.4) of the increase in average-heat
exposure at the 26 °C threshold can be attributed to the escalation in exposure to strong or

above heat stress exceeding the 32 °C threshold. Tables D.1 and D.2 in the online Appendix

enumerate levels and changes for average child-heat exposure at additional UTCI thresholds.

Increases in Shares of Children at Risk of Heat Exposure (SEIDT). While the previous re-
sults focus on heat exposure for the average child in China, they do not provide information on
how many children were increasingly at risk of ambient heat exposure. In this section, given
the changing distributions of heat and of children across counties in China, we computed the
SEIDT statistics and examined whether the percentage of children most affected by heat stress
also changed over time.

We computed the share of children at risk by jointly considering two thresholds of risks:
a threshold for the level of heat-stress exposure (intensity) and a threshold for the share of
annual hours (duration) exposed to heat stress above a particular threshold. Figure 2 presents
results for combinations of selected thresholds for the duration of time exposed to heat stress
(from 4% to 36%) and the intensity of heat stress (from above 26 °C to above 38 °C). Online
Appendix Tables D.3 and D.4 provide tabulations at additional thresholds.

Exposure to at-least-some moderate-heat stress was nearly universal among children in
China. In 1990 (Figure 2 Panel a) and 2020 (Figure 2 Panel b), respectively, 97.2% and 97.7% of
children experienced at least 4% of their hours, or over 2 weeks, in moderate-or-stronger-heat
stress (i.e. UTCI > 26 °C). At longer durations of exposure to heat stress, the shares of affected
children were lower.

The shares of children enduring prolonged exposure to heat stress increased substantially

from 1990 to 2020. In 1990, 6.7% of children experienced moderate or stronger heat stress for



more than 36% of their total hours, or equivalently, for over 16 weeks. By 2020, this number
rose to 13.7%, marking an increase of 7.0 percentage points (Figure 2 Panel c) or 106%. In other
words, the shares of children experiencing at-least moderate-heat stress for at least 32% of their
total hours in 2020 more than doubled compared to 1990.

Similar increases in the shares of children experiencing heat stress were observed along a
frontier of higher (or lower) heat-stress intensity and lower (or higher) duration combinations.
For example, 11.2% of children had at least 12% of their total hours, or 6 weeks at strong-heat
stress or above (> 32°C). This number rose to 18.6% in 2020, representing a 7.4 percentage-
point or 66.3% increase.

Especially alarming were rapid increases in the shares of children at risk for very-strong-
heat stress, emerging first for low duration of exposure. In particular, the shares of children
experiencing at least 4% of their total hours at very-strong-heat stress (> 38 °C) increased from
0.1% to 1.8%. While the shares of children exposed to these extreme-risk levels remained small,
these increases represented approximately an 18-fold jump in the shares of children at these
high-exposure-risk levels. With 249.9 million children between ages 0 to 15 in China in 2020,

1.8% amounts to 4.5 million children.

Decomposing the Contributions of Changes in Climate and Population. Our decomposi-
tion analysis illustrates the extent to which changes in children’s heat exposure over time can
be attributed to shifts in the child population distribution, or due to changes in UTCI driven by
meteorological changes. In this calculation, we computed counterfactual STAC statistics after
altering one distribution (either children’s population or UTCI) to 2020 levels while keeping
the other constant at 1990 levels, without modeling mechanisms of change.

Figure 3 demonstrates that the increase in an average child’s heat-stress exposure from 1990
to 2020 resulted from both climatic change and shifts in children’s population distribution. For
at-least-strong (> 32°C) and at-least-moderate (> 26 °C) heat-stress levels, child population
distribution shifts accounted for 48% and 50% of the actual change, respectively. UTCI distri-
bution shifts accounted for 42% and 40% of the actual changes, respectively. The remaining
residual changes were due to interactions between shifts in climatic and population distribu-
tions.

While both population distribution changes and climatic changes contributed to the rise

in the average-child’s heat-stress exposures, regional decomposition analysis showed varying



contributions within regions. Specifically, changes in the population distribution accounted
for about 1/3 of the exposure shifts in the Eastern region and less than 1/5 in the Northeastern
region. This suggests that cross-region shifts in children’s distribution, due to for example
migration to the Eastern region or fertility decline in the Northeastern region, contributed
significantly to the national-population-decomposition results. Online Appendix Table D.5
provides additional details on regional-decomposition results.

Figure 3 also indicates that at higher-UTCI thresholds, the influence of changes in popula-
tion distributions diminished. Nationally, the contribution of population distributions to heat-
stress exposure declined with increasing-heat thresholds, from 50% at the 26 °C UTCI thresh-
old to 39% at the 36 °C UTCI threshold. Similarly, the contribution of population distributions
declined from 38% to 19% in the Eastern region and from 16% to 5% in the Northeastern region
over the same sets of UTCI-threshold increments. This suggests that the rise in more-extreme
heat exposures was primarily a result of climatic changes, rather than population shifts to al-

ready hotter areas.

Changes in Children’s Heat Exposure Across Regions. We present in Figure 4 Panels (a)
and (b) regional-STAC statistics, which show the average shares of annual time at risk of heat
stress for children in 1990 and 2020 across the four major economic regions of China. Figure 4
(c) shows the percentage-point change between 1990 and 2020 across these regions. Tables D.7
and D.8 in the online Appendix detail within-region provincial results.

Children in both the Central and Eastern regions experienced high levels of heat-stress
exposure. For instance, in 1990, an average child in the Eastern and Central regions faced
at-least-moderate-heat stress (> 26 °C) 23.6% and 23.4% of the time, and at-least-strong heat
stress (> 32°C) 8.4% and 9.3% of the time, respectively. The shares of time exposed to at-
least-moderate or at-least-strong heat stress in these two regions remained high in 2020 as
shown in Figure 4 Panel (b). The percentage-point increases in the shares of time at risk of
heat exposure were notable across various UTCI thresholds in the Eastern region, with a 4.4
percentage-point increase at the 26 °C UTCI threshold and a 1.7 percentage-point increase at
the 32 °C UTCI threshold. In contrast, for the Central region, the increases in the share of time
remained at below one percentage point across UTCI thresholds (Figure 4 (c)). The comparison
indicates that although Eastern- and Central-region children both have significant exposures

to heat, those in the Eastern region have faced a heightened challenge in adapting to heat stress



owing to the rapid increase in average exposure duration.

Compared to the Eastern and Central regions, the Northeastern region had relatively low
average-child-heat exposure in 1990. However, the average child’s share of annual time in the
Northeastern region increased 19% for at-least-moderate-heat stress (> 26 °C) and 106% for at-
least-strong-heat stress (> 32 °C). In 2020, the average Northeastern-region child experienced
8.9% and 2.4% of her time under at-least-moderate (> 26 °C) and at-least-strong (> 32 °C) heat
stress, respectively. While child-heat stress in the Northeastern region remained much lower
than that in the Central and Eastern regions, the rapid increases indicate potential challenges
for a population that is not accustomed to heat to protect children from emerging occurrences
of heat stress.

Zooming in to the provincial level, in 2020, Hainan (Eastern), Guangdong (Eastern), Guangxi
(Western), Jiangxi (Central), and Fujian (Eastern) were generally ranked as the top one-to-five
provinces respectively in terms of the average shares of child time exposed to heat across UTCI
thresholds. Specifically, in 2020, children in these provinces had on average 19.2%, 15.2%,
13.2%, 12.8%, and 11.8% shares of time exposed to at-least-strong-heat stress (UTCI > 32 °C),
which represented respective increases of 17%, 20%, 8%, 16%, and 54% in shares of time ex-
posed compared to 1990. While Northeastern and Eastern provinces generally experienced
substantial increases in heat exposure, provinces in the Central and Western regions experi-
enced limited exposure increases or reductions. Tables D.7 and D.8 in the online Appendix

detail within-region provincial results.

4 Discussion

As climatic change intensifies, the distributions of children’s exposure to extreme heat are of
critical concern for human development and public health (Connon and Dominelli 2022a; Park,
Behrer, and Goodman 2021; Prentice et al. 2024; Zivin and Shrader 2016), but these distribu-
tions have received limited attention in research. This study analyzed children’s exposure to
extreme heat in China over the past 30 years. Leveraging both geographical and temporal
distributions of heat and of children, our study uncovered significant increases in children’s
exposures to moderate-or-stronger heat by an average of 238 hours from 1990 to 2020. The
shares of children experiencing over 18 weeks per year of such heat stress more than doubled,

indicating a growing vulnerability to heat exposure among children.



Our results highlighted the compound effect of rising temperatures and shifts in child-
population-geographical distributions, particularly in a large nation like China with popula-
tion and temperature distribution heterogeneities. The exposure to higher heat-stress levels,
especially in the Eastern region, underscored the urgency for targeted interventions. This in-
cludes enhancing climate resilience and heat-stress mitigation strategies, especially in urban
areas where "heat island" effects may exacerbate high temperatures (Masson et al. 2020), as
found in cities across China (Peng et al. 2018). Additionally, our findings underscored the
importance of considering demographic changes in addition to climatic trends, as population
shifts contributed significantly to the observed increase in heat exposure (Jones et al. 2015; Liu
et al. 2017).

Conceptually, our approach to analyzing population-climatic exposure changes moved from
the conventional metric of total person-time for measuring overall heat-exposure burdens to a
double-dual-distributional framework that considered both exposure intensity and exposure du-
ration given changing population and temperature distributions. This approach enabled com-
prehensive analysis of the shares of children experiencing 1) varying degrees of heat stress (ex-
posure intensity) over 2) varying spans of time (exposure duration). It allowed for cross-time
and cross-location comparisons. Moreover, this approach emphasized shifts in population-
spatial distribution rather than changes in total population numbers, making it particularly
valuable in identifying populations at risk of exposure in scenarios with substnatial migration.

Our framework combined tabular-population-census data with gridded-climatic data across
time and space. We provided a framework for integrating population and climatic data for cli-
matic and social scientists and policymakers interested in examining changing exposures of
different populations to climatic and environmental hazards. While the availability of subna-
tional and consistent global population data across long time spans is limited, subnational cen-
sus data are publicly available for many countries across time and could be merged with pub-
licly available global-temperature and other-climatic data to explore changes in population-
based climatic exposures over time.

Our study has limitations. First, we examined ambient exposures, and did not explore how
the same-ambient-heat stress might impact heterogeneously individuals residing in the same
location but coming from varied socio-economic backgrounds. Socioeconomic disparities in
access to air conditioning or other adaptive resources can significantly influence the actual ex-

perience of heat stress (Xu, Sheffield, et al. 2014; Zivin and Shrader 2016). At an aggregate level,
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regions with similar ambient exposures but at different stages of economic development could
also have varied levels of adaptabilities to the same heat stress (Braithwaite et al. 2024). Future
research may benefit from examining the heterogeneities in exposure by exploiting the mi-
gratory paths of children and households using panel data or retrospective surveys (Mueller,
Gray, and Kosec 2014). Second, the use of county-level data, while detailed, might still miss
finer nuances of heat stress, especially in densely populated urban areas where microclimatic
variations were significant (Wang et al. 2021; Zhou et al. 2015). Future research can build upon
our study by integrating our frameworks with various definitions of heat exposure and using
more fine-grained geographic units.

Despite these limitations, our study contributed new insights about the extent of heat-
stress-exposure change for children between 1990 and 2020 in the country with the world’s
largest population of children in 1990. Importantly, we showed that changes in population
distributions on the national level, though with variations among regions, were about as im-
portant as climatic changes. That the changing-spatial distribution of children is a crucial com-
ponent of changing-child-heat-exposure risk is potentially relevant globally, given substantial
shifts in recent decades in the distribution of the global child population across world regions
(Hannum, Kim, and Wang 2024, Appendix Al). The simple approach that we developed,
moreover, permits new insights with minimal-data demands and therefore fruitfully could be

easily applied to other countries and regions.
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Figure 1: Change in Share of Time for the Average Child at or above UTCI Thresholds for
Children 1990-2020
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Notes: Panel (a) displays the percentage points (pp) change in the Share of Time for the Average Child
at or above UTCI thresholds between 1990 and 2020, while Panel (b) displays the percentage changes
in this share. The purple solid line represents results for all annual hours, the green short-dash line for
the summer season (April to September), and the yellow long-dash line for daytime hours (6 am to 10
pm). Background colors indicate UTCI heat exposure categories. UTCI values above 26 to 32 degrees
Celsius indicate moderate heat stress (light pink), from 32 to 38 degrees Celsius indicate strong heat
stress (pink), and from 38 to 46 degrees Celsius indicate very strong heat stress (dark pink). Results
above 40 degrees Celsius were not shown because very few children were exposed to such high levels
of heat during the observed time periods in China. Tables D.1 and D.2 in the online Appendix tabulate
results.
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Figure 2: Share of Children Exposed to Heat Stress by Intensity and Duration
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Notes: Panel (a) presents the share of children at risk of heat stress by duration and intensity in 1990.
The duration is measured as the share of annual hours, whereas the intensity is measured as being at or
above the UTCI threshold. Panel (b) presents the share of children at risk of heat stress by duration and
intensity in 2020. Panel (c) presents the percentage points (pp) changes of children at risk of heat stress
by duration and intensity between 1990 and 2020. Tables D.3 and D.4 in the online Appendix tabulate
results.
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Figure 3: Decomposed Change in Share of Time for the Average Child at Risk of Heat Stress

Very Strong

Moderate Heat Stress Strong Heat Stress
g Heat Stress

3%

2% == 2020 - 1990
= Climate Effect

Population Effect

1%] ==~

Percentage points (pp) changes

-~
-~
h--A--...

0% nL.‘_-.---.;'-{—._

226 °C 228 °C 230 °C 232°C 234°C 236 °C 238 °C 240°C

UTCI thresholds

Notes: The purple solid line represents the percentage point difference in the share of time for the aver-
age child at risk of exposure to heat stress for children aged 0 to 14 between 1990 and 2020 (with 1990 as
the baseline year). In the first counterfactual decomposition, we fix the children’s population distribu-
tion in 1990 with the observed Universal Thermal Climate Index (UTCI) in 2020. The green short-dash
line, or the climate effect, represents the percentage difference between the first counterfactual decom-
position results and the baseline (using 1990 children’s population distribution with 1990 UTCI). In the
second counterfactual decomposition, we fix the UTCI at the 1990 level and use the children’s popula-
tion distribution in 2020. The yellow long-dash line, or the population effect, represents the percentage
difference between the second counterfactual decomposition results and the baseline. Tables D.5 and
D.6 in the online Appendix tabulate the results.
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Figure 4: Regional Share of Time for the Average Child at Risk of Heat Stress
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Notes: The y-axis depicts the percentage point difference from 2020 and 1990 heat exposure for children
ages 0-14. We display these differences across the four economic regions of China and across different
thresholds of heat exposure (moderate, strong, and very strong). Tables D.7 and D.8 in the online
Appendix tabulate results.
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Supplemental Information

Rising Temperatures, Rising Risks: Changes in Chinese Children’s
Ambient Heat Exposure between 1990 and 2020

Kai Feng, Marco M. Laghi, Jere R. Behrman, Emily Hannum, and Fan Wang

A Method

We now formalize our temperature-exposure analysis framework across time and space. Specif-
ically, let c(t) be the UTCI temperature experienced by an individual at a moment in time t
at a location 1. Between period t and t + T, the share of time that individuals at location 1

experience temperature c(t) over threshold c* is, s1 (c*, t, 7):

t+t

s (¢, t,1) = 1J 1{ci(t) > c*}dt . @)

TJt

Depending on the analysis, our definition of time period includes all time during the day, all
day time hours (6 am to 10 pm), or all hours within different seasons (e.g., April-September,
October-March). Additionally, let Py« (1/m) be the share of population for socio-demographic
group m in a location |, among L locations in total between time t and t + T. Total population

shares across locations sum up to 1: Zlel Pict<ttr (m) =1

Average share of time of heat exposure We compute two key sets of statistics. First, we
compute 8, (c*,t, T), which measures, during a particular interval of time, the average share
of time individuals of socio-demographic group m are exposed to temperature over threshold

*

c

L

8111 (C*/t/ T) = Z Pt§t<t+’r (Um) ©S1 (C*/t/ T) . (2)
1=1

Sm (c*, t,T) is the Share of Time for the Average Child (STAC) statistic, which measures, for the
average child, the share of time exposed to ambient extreme temperature during a particular
time-frame across temperature thresholds.

Since 8, (c*,t,T) is a statistics for share of time, it varies between 0 and 1. In particular,

limes 500 8Sm (€*,1,T) = 0 and lime+—5 oo 81 (c*,t,T) = 1. A key aggregate statistic for how
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temperature exposure shifts between period t’ and t is the following difference:
Agm,t’,t (C*/T) = Sm (C*/t// T) - Sm (C*/ t, T) . (3)

A8y 1 ¢ (¢*,T) is the population-weighted average increase in the share of time exposed to
the potential key temperature threshold c* between time t and t’ for population group m.
A8 1 ¢ (¢*, T) shifts due to both shifts in the population distribution as well as the distribution
of temperature between t and t’, thus taking into account both population and meteorological

changes across time and space.

Share of children by duration and intensity of heat exposure Second, we compute the share
of individuals at risk, based on a joint consideration of the relevant temperature threshold that
might be considered risky for human development, and the share of time exposed to such
temperature that would put individuals at risk of non-transitory impacts.

We consider these two joint dimensions of risks in computing population exposure statis-
tics. Specifically, let s* (T) be a particular share-of-time threshold within span of time T above
a specific temperature risk threshold. We define the m-, c¢*-, and s*-specific at-risk measure

R (c*,8*,1,7T) between time t and t + T as:

L

Rin (€*,5%,4,7) = ) Prcrerr (Um) - 1si (c*,t,7) > s* (1)) (4)
1=1

Rm (c*,s*,t,7) is the Share Exposed by Intensity and Duration Thresholds (SEIDT) statistic, which
measures the share of children exposed to extreme temperature by differing temperature (in-
tensity) and time (duration) thresholds.

By construction, Ry, (¢*,s* =0,t,7) < 1 and Ry, (¢*,s* =1,t,7) = 0. Additionally, the
share of individuals experiencing greater than s* share of time over c¢* threshold converges to
0 as c¢* increases: limc+_y o0 Ry (c*, 8%,t,T) = 0.

For the socio-demographic group indexed by m, given temperature threshold c* and share
of time threshold s*, the percentage increase over time in the share of individuals from this

group at risk of excess heat exposure is:

AR (€5,8%,1T) = R (¢, 85, t/, 1) — R (¥, 8%, 1, 7). 5)
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One important aspect of our framework is that computing R, (c¢*,s*,t,T) and AR, ¢/ (¢*, 8%, T)
do not require the use of harmonized geographic data overtime. This is often a constraint
in the analysis of temperature changes over time, due to shifting administrative boundaries,
especially across large spans of time. In our framework, we consider all 1 € {1,...,L} loca-
tions within a region, and generate time-specific population-temperature cumulative distribu-
tion functions by sorting locations along the gradient of heat exposures and summing up the
share of population for socio-demographic group m along ascending levels of heat exposures.
While our distributions are discretized by location-level administrative units, when there are
large number of locations with dispersed population, the population-temperature distribu-
tions tend to be approximately smooth. Cross-time comparisons, especially at higher levels of
regional aggregation, are based on these approximately smooth distributions over time. Hence
moments and percentiles of these population-temperature distributions are robust to shifts in

sub-region location boundaries.

Framework and empirical results In our empirical application, t is 1990 and, t’ is 2020, T is
one calendar year, and m is children between ages 0 and 14. Additionally, we approximate
continuous time with hourly measurements. As an example, AR hiidren 2020,1990 With ¢* = 28
and s* = 0.1 provides the change in the percentage points of children exposed to temperature
over 28 degrees for greater than 10 percent of their time during a year.

Results for ASm—ages 0 to 15,t/—year 2020,t —year 1990 (¢*, T = 1 year) are summarized in Figure 1
and Tables D.1 and D.2. These capture changes in the average share of time children are ex-

*

posed to temperature over a range of heat thresholds—23°C < ¢* < 40°C—considering all
hours, day time hours, or hours during hotter and colder seasons.

Results for AR —ages 0 to 15, =year 2020, t=year 1990 (€*, 8, T = 1 year) are summarized in Figure
2 and Tables D.3 and D.4. These capture changes in the share of children experiencing ambient
heat exposure for over a range of c¢* heat intensity thresholds—23°C < ¢* < 40°C—and s* heat
exposure duration thresholds—4% of year < s* < 36% of year.

Additionally, Figure 3 and Tables D.5 and D.6 summarize decompositional results that com-
pute changes in the average share of time of child exposure, but combining 1990 population
distribution with 2020 heat exposure distribution, and also 1990 heat exposure distribution

with 2020 population distribution. Finally, Figure 4 and Tables D.7 and D.8 provide regional

results on the changes in the average share of time of child exposure.
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B Data

ERAS5 Data Details To measure heat, we used the fifth generation of the European Centre
for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalyses of the global climate:
the ERA5-HEAT dataset (Napoli 2020). Covering the period from 1940 to the present, ERA5-
HEAT comprises hourly gridded maps of the Universal Thermal Climate Index (UTCI) at 0.25°
x 0.25° spatial resolution. The dataset is publicly accessible through the Copernicus Climate
Change Service’s Climate Data Store (CDS). The UTCI is a widely used index to assess the
human-perceived thermal stress based on atmospheric conditions, integrating atmospheric
parameters like temperature, humidity, wind speed, and solar radiation. UTCI is expressed in
degrees Celsius (°C), and it provides a measure of how cold or hot people might feel under
prevailing environmental conditions (Brode et al. 2012; Jendritzky, Dear, and Havenith 2012;
Jendritzky and Hoppe 2017). When UTCI is between 26 °C and 32 °C, it indicates moderate-
heat stress on the human body, signifying warm conditions where individuals may start to
feel uncomfortable, especially if engaging in physical activity. As the UTCI value increases,
the level of thermal stress on the human body intensifies. UTCI values between 32°C and
38 °C indicate strong-heat stress, whereas UTCI values between 38 °C and 46 °C indicate very-
strong-heat stress (Brode et al. 2012). We utilized these UTCI stress categories in this study.
By incorporating information on ambient temperature, humidity, wind, and radiation (Napoli

2020), UTCI provides a more reflective measure of physiological experience as a result of expo-
sure than simple temperature. Other popular indices used by weather services (e.g., RealFeel)
similarly consider factors beyond just temperature in producing an exposure experience mea-
surement that so happens to use temperature unit labels (AccuWeather.com 2019). ERA5-Land
is one alternative to UTCI with extensive data availability, but ERA5-Land as a measure lacks
consideration of humidity (Copernicus Climate Change Service 2019). We maintain that UTCI

data is the preferred unit of measure to examine child heat exposure.

Census population data details For population data, we utilized Chinese-census data for the
years 1990 and 2020 (All China Market Research Ltd 2022; Beijing Hua tong ren shi chang xin
xi you xian ze ren gong si 2005a, 2005b; China Data Lab 2020). County-level child population
data and county-level administrative boundary files were extracted and used to construct ages
0-14 populations by county. For regional analysis, we considered the child population and

UTCI distributions within each one of the four recognized economic regions of China (National
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Bureau of Statistics of China 2011).

Rather than projecting future climate scenarios based on extending trends of existing na-
tional data, we focus on historical heat exposure using past census data. Granular historical
environmental analysis is dependent on existing data. Historical national-level population
aggregates vary in the level depending on the year observed. We use the detailed censuses
from 1990 onward in our analysis to analyze historic child heat exposure on the county level
to capture and best contextualize the specific population movements for children.

We use information from 2,369 geographical units at the county level nested in 31 provin-
cial administrative units from the Tabulation on 1990 China Population Census by County. We
start with the 1990 Chinese Census as it is the first to offer county-level population counts for
individuals between ages 0 to 14. We only include mainland China and do not include special
administrative regions. Within each county, we calculate the sum of ages 0 to 14 child popula-
tion regardless of gender. In 1990, the total number of children across all counties included for
analysis was 312,995,886.

We use information from 2,853 geographical units at the county level nested in 31 provincial
administrative units from the Tabulation on 2020 China Population Census by County. We only
include mainland China and do not include special administrative regions. We again calculate
the population counts for children between ages 0 to 14, regardless of gender, in our analysis.

In 2020, the total number of children across all counties included for analysis was 249,260,992.
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C Integrating Climatic and Population Data

All project data processing, integration, and analysis code are shared at our project repository:
https:/ /github.com/Climatelnequality /PrjCEC. In this section, we summarize key aspects of
how we integrate climatic and population data to enable the analysis of changes over time in
heat burden facing children. Specifically, code for generating computing population-weighted
exposure statistics are included in the R folder, and integrated population-climate data outputs

for each analysis included in the paper are stored in the data-res folder.

ERAS5-HEAT data input specification To capture the entire mainland China area, we employ
China’s far-east (135°E), far-west (53°E), far-south (4°N), and far-north (54°N) points as spatial
references in our API request to extract a rectangle area that contains gridded data covering lat-
itude and longitude coordinates that encompass mainland China from the ERA5-HEAT data.
We specify all months, dates, and hours in calendar years 1990 and 2020 in our API request.
After downloading coordinate-specific hourly UTCI from all dates, we consolidate them into
data files by year. For example, in the 2020 data file, corresponding to each coordinate in the
gridded map (data rows), we include UTCI values for all hours between January 1, 2020 to

December 31, 2020 (data columns).

Population data input specification We obtain county-level demographic data from census
tabulations. In each census file, there is one unique identification number for each county-level
administrative unit. Each county includes demographic data by age group and gender for the
corresponding census year. The county-level shapefile for each census year provides geome-
tries defining the boundaries of each county. The geometry information for each county—
summarized by county-specific sets of polygon-bounding vertices in longitude and latitude
units—is important for linking the population data with the gridded UTCI data.

The final population input consists of a data matrix. In this matrix, the first column iden-
tifies a distinct county-level administrative unit ID, while other columns store the proportion
of the population between ages 0 to 14 in each county relative to the total population between
ages 0 to 14 during one census year. While our focus is on children between ages 0 to 14, our

approach has the flexibility to be extended to any demographic group as needed.
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Specifying key files There are three key files necessary for linking population data input and
UTCI input: (1) key file that links the coordinates to counties. (2) key file that links county to
province and regions. (3) key file that links population input column variables to the original
labels (e.g., age groups and gender), and grouping variables for aggregation purposes (i.e., age
groups 0-14, 15-64, 65+).

Coordinates to counties. We use spatial join from the "sf" package in R (Pebesma 2018)
to identify coordinates from UTCI data that fall within each county boundary. Some county
units are too small to include any coordinates. In this case, we use the nearest coordinate to
the centroid of the county geometry. The final key file includes a list of coordinates, with each
coordinate matched with the corresponding county-level administrative code in China. The
county code provides linkages to the county-level population census, while the coordinates
provides linkages to the gridded ERA5-HEAT data.

County to province/region. Each county code can be linked back to the province and eco-
nomic regions that the county belong to. In addition to province, we can easily aggregate the
county to other higher level units.

Population input columns to labels. This key file provides label names to the population

input columns.

Location boundaries and population-weighted temperature distributions As stated pre-
viously, for geo-based analysis over time, harmonizing location boundaries that may change
over time is often challenging. This can be difficult to deal with when analyses use county-level
boundaries, as Chinese administrative names and boundaries have changed substantially over
30 years. Our child-population based analysis does not compare each county-level unit over
time, instead, we compare child-population-weighted temperature distributions using cross-
county information.

Depending on our analysis, we consider all counties in China, in a region, or in a province,
and generate year-specific population-temperature cumulative distribution functions by sort-
ing counties along the gradient of heat exposures and summing up the share of child pop-
ulation along ascending levels of heat exposures. While our distributions are discretized
by county-level administrative units, at regional and national aggregation levels, given that
there are 2369 (in 1990) and 2853 (in 2020) county-level administrative units in China, the

population-temperature distributions are approximately smooth. Cross-time comparisons, es-
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pecially at the national and regional levels, are based on these fine-grained discrete distribu-

tion.
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Figure C.1: Chinese Counties and UTCI Grids, Shanghai
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Notes: We superimpose UTCI grid points (0.25° x 0.25° longitude-latitude grid) over 1990 and 2020
district/county-level administrative boundaries (red boundary lines) from Shanghai, China. We show grid points
(shown as black dots) that fall within the boundary of at least one district/county-level administrative unit. We
associate county-level child population data with the average hourly temperature of grid points that fall within
the boundaries of the county-level administrative unit. For Shanghai counties that do not overlap with any grid
points, we associate children in the county with hourly temperatures from the spatial grid point that is the closest
to the centroid location for the county.
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Figure C.2: Chinese Counties and UTCI Grids, Henan

(a) 1990 counties
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Notes: We superimpose UTCI grid points (0.25° x 0.25° longitude-latitude grid) over 1990 and 2020 county-level
administrative boundaries (red boundary lines) from Henan, China. We show grid points (shown as black dots)
that fall within the boundary of at least one county-level administrative unit. We associate county-level child
population data with the average hourly temperature of grid points that fall within the boundaries of the county-
level administrative unit.
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Figure C.3: Chinese Counties and UTCI Grids, Qinghai
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Notes: We superimpose UTCI grid points (0.25° x 0.25° longitude-latitude grid) over 1990 and 2020 county-level
administrative boundaries (red boundary lines) from Qinghai, China. We show grid points (shown as black dots)
that fall within the boundary of at least one county-level administrative unit. We associate county-level child
population data with the average hourly temperature of grid points that fall within the boundaries of the county-
level administrative unit.
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Table C.1: The Distribution of the Number of Overlapping Grid Points (0.25° x 0.25° lon-
gitude-latitude grid) and the Distribution of Children (ages 0-14) among the 2369 Chinese
Counties in 1990 and 2853 Chinese Counties in 2020

Number of grid points Number of counties Percent of children Cumulative % of children

1990 2020 1990 2020 1990 2020

Panel A: Less than 6 grid points falling within a county

1 503 957 19.89% 34.51% 19.89% 34.51%

2 467 508 21.29% 20.18% 41.19% 54.68%

3 378 382 17.58% 15.51% 58.77% 70.19%

4 307 309 16.08% 12.94% 74.84% 83.13%

5 171 167 8.10% 6.23% 82.94% 89.36%

Panel B: Between 6 and 50 grid points falling within a county
6to 10 280 275 12.65% 7.42% 95.59% 96.77%
11 to 20 135 131 2.77% 1.77% 98.36% 98.54%
21 to 30 46 41 0.75% 0.68% 99.11% 99.22%
31 to 40 29 27 0.34% 0.27% 99.46% 99.50%
41to 50 14 15 0.19% 0.13% 99.65% 99.63%
Panel C: 51 or more grid points falling within a county

51 to 100 24 27 0.25% 0.27% 99.90% 99.89%
101 to 200 12 11 0.09% 0.09% 99.99% 99.99%
201 to 330 3 3 0.01% 0.01% 100.00% 100.00%

Note: We overlay boundaries for Chinese counties (administrative level 3) in 1990 and 2020 with 0.25° x 0.25° longi-
tude-latitude spatial grids, which is the spatial resolution for the Universal Thermal Climate Index (UTCI) data that we
use. We count the number of grid points that intersect (fall within the boundary) with each Chinese county. For county
boundaries that do not intersect with points on the grid, we associate the county to the spatial grid point that is the clos-
est to the centroid location for the county, and count that county has having 1 grid point. In the first column, we present
categorizations of counties by the number of 0.25° x 0.25° spatial grid points. In the second and third columns, we count
the number of counties intersecting with different numbers of spatial grid points in 1990 and 2020. In the fourth and fifth
columns, we show the percentage of children, as a share of the overall child (ages 0-14) population, that reside in the coun-
ties categorized in the second and third columns. In the sixth and seventh columns, we show the corresponding cumulative
percentage of children. The statistics show, for example, that in 1990, 467 counties intersect with two 0.25° x 0.25° spatial
grid points, these counties account for 21.3% of the child population in 1990, and 41.2% of children reside in counties with
equal or less than two intersecting UTCI spatial grid points.
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Table C.2: The Distribution of Chinese Children (ages 0-14) Across Counties in 1990 and 2020

Percentiles
Statistics Year 1 10 25 50 75 90 99
Panel A: National
Number 1990 27.5K 79.3K 117.0K 185.7K 291.0K 405.5K 1240.1K
Percent 1990 0.008% 0.024% 0.036% 0.057% 0.09% 0.125% 0.382%
Number 2020 15.5K 479K 774K 128.3K 201.7K 296.0K 689.6K
Percent 2020 0.006% 0.019% 0.031% 0.051% 0.081% 0.118% 0.276%
Panel B: Central region
Number 1990 39.6K 89.9K 140.9K 215.7K 312.4K 404.9K 540.0K
Percent 1990 0.012% 0.028% 0.043% 0.066% 0.096% 0.125% 0.166%
Number 2020 20.3K 54.7K 86.7K 142.7K 209.3K 270.6K 374.3K
Percent 2020 0.008% 0.022% 0.035% 0.057% 0.084% 0.108% 0.15%
Panel C: Eastern region
Number 1990 52.2K 94.3K 138.1K 206.0K 320.9K 486.7K 1453.2K
Percent 1990 0.016% 0.029% 0.043% 0.063% 0.099% 0.15% 0.448%
Number 2020 33.3K 67.8K 97.9K 150.8K 239.1K 378.8K 1376.4K
Percent 2020 0.013% 0.027% 0.039% 0.06% 0.096% 0.152% 0.551%
Panel D: Northeastern region
Number 1990 25.2K 83.9K 116.8K 165.4K 249.8K 332.4K 984.1K
Percent 1990 0.008% 0.026% 0.036% 0.051% 0.077% 0.102% 0.303%
Number 2020 6.0K 21.5K 33.4K 51.5K 76.4K 116.9K 233.0K
Percent 2020 0.002% 0.009% 0.013% 0.021% 0.031% 0.047% 0.093%
Panel E: Western region
Number 1990 14.6K 549K 90.1K 137.3K 238.4K 350.5K 563.6K
Percent 1990 0.004% 0.017% 0.028% 0.042% 0.073% 0.108% 0.174%
Number 2020 10.6K 37.1K 62.4K 99.4K 164.9K 235.4K 405.0K
Percent 2020 0.004% 0.015% 0.025% 0.04% 0.066% 0.094% 0.162%

Note: Drawing on the 1990 and 2020 Chinese census, we present key percentiles of county-level distribution of child popula-
tion (ages 0-14) in China in 1990 and 2020. In the rows where the statistics are “Number”, we show the number of children
in units of thousands of children. In the rows where the statistics are “Percent”, we show the percent of children in a county
as a share of the overall child (ages 0-14) population in the country. We present national and regional results. The statistics
show, for example, that in 1990, the median county in China had 185.7 thousand children, which is equivalent to 0.057% of
the overall child (ages 0-14) population in the country.
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D Additional Results on heat exposure for children

Code and results for the additional results in this section as well as in the main text of the paper

are accessible at: https://github.com/Climatelnequality / PrjCEC.

D.1 Average shares of time of heat exposure for children (STAC)

In Tables D.1 and D.2, we present additional details on changes in the average shares of time
that Chinese children (ages 0-14) are at risk of heat exposure, between the years 1990 and
2020. Selected STAC results are visualized in Figure 1. We compute the annual average share
of time that Chinese children are exposed to UTCI temperatures at or above various thresholds
z°C. We group thresholds by panels focusing at least borderline thermal stress (23 °C-25°C),
at least moderate heat stress (26 °C-31 °C), at least strong heat stress (32 °C-37°C), and very
strong heat stress (38 °C—40°C).

Table D.1’s first four columns contain our main results where we consider ambient exposure
during all hours of 1990 and 2020. The remaining four columns in Table D.1 present results
considering only daytime (between 6 am and 10 pm) hours. Table D.2 presents results where
we compare average exposures in the warmer months of April, May, June, July, August, and
September with exposures during the colder months of January, February, March, October,
November, and December in 1990 and 2020.

Tables D.1 and D.2 show that children’s share of time at or above various UTCI heat stress
thresholds increased across all heat stress thresholds. Specifically, Tables D.1 and D.2 show
that there are between 14 and 18 percent increases the average share of time that children
experienced at least moderate and strong heat stress for all hours, daytime hours only, as well
as all hours between April and September. Interestingly, despite their low levels (less than 0.5%
share of time), Table D.2 shows that heat exposure increased substantially during the colder

months by 14% to 476% across thresholds between 1990 and 2020.
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Table D.1: Change in Average Share of Time at or above UTCI Heat Thresholds for Chinese
Children (ages 0-14), 1990 to 2020

All annual hours > UTCI thresholds Day time (6 am-10 pm) hours > UTCI thresholds
Share of time Changes Share of time Changes
UTCI thresholds 1990 2020 Level % 1990 2020 Level %

Panel A: Very strong heat stress

>40°C 0.3% 0.3% 0.0007pp 0.2% 0.4% 0.4% 0.001pp 0.2%
>39°C 0.6% 0.6% 0.0pp 6.7% 0.9% 0.9% 0.1pp 6.7%
>38°C 1.0% 1.2% 0.1pp 10.6% 1.6% 1.7% 0.2pp 10.7%

Panel B: At least strong heat stress

>37°C 1.7% 1.9% 0.3pp 15.1% 2.5% 2.9% 0.4pp 15.1%
236°C 2.5% 2.9% 0.4pp 17.3% 3.7% 4.4% 0.6pp 17.3%
>35°C 3.4% 41% 0.6pp 18.1% 5.2% 6.1% 0.9pp 18.1%
>34°C 4.6% 5.4% 0.8pp 17.5% 6.8% 8.0% 1.2pp 17.5%
>33°C 5.8% 6.7% 0.9pp 16.1% 8.7% 10.1% 1.4pp 16.1%
>32°C 7.2% 8.3% 1.1pp 14.7% 10.8% 12.3% 1.6pp 14.8%
Panel C: At least moderate heat stress
>31°C 8.7% 9.9% 1.2pp 13.9% 12.9% 14.7% 1.8pp 13.8%
>30°C 10.4% 11.8% 1.4pp 13.6% 15.2% 17.3% 2.0pp 13.2%
>29°C 12.3% 14.1% 1.7pp 14.0% 17.7% 20.0% 2.3pp 12.8%
>28°C 14.6% 16.8% 2.2pp 14.8% 20.4% 22.9% 2.6pp 12.5%
>27°C 17.2% 19.8% 2.5pp 14.8% 23.2% 26.0% 2.8pp 12.0%
>26°C 20.1% 22.8% 2.7pp 13.5% 26.2% 29.1% 2.9pp 11.0%
Panel D: At least borderline thermal stress
>25°C 23.0% 25.7% 2.7pp 11.8% 29.3% 32.1% 2.8pp 9.7%
>24°C 25.9% 28.6% 2.6pp 10.1% 32.3% 35.1% 2.7pp 8.5%
=>23°C 28.7% 31.3% 2.6pp 9.0% 35.3% 38.1% 2.7pp 7.7%

Note: Columns 1, 2, 5, and 6 show the annual average share of time at or above various UTCI thresholds (UTCI tempera-
tures at > z ° C) for children in China (ages 0-14). Columns 3, 4, 7, and 8 show 1990 to 2020 changes in percentage points
(level) or percentage (%) of the average shares of time at or above UTCI heat thresholds. We consider both all hourly as
well as only daytime hourly (between 6 am and 10 am) UTCI temperature data.
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Table D.2: Change in Average Share of Time at or above UTCI Heat Thresholds for Chinese
Children (ages 0-14), during Warmer and Colder Months, 1990 to 2020

April-September hours > UTCI thresholds October-March hours > UTCI thresholds
Share of time Changes Share of time Changes
UTCI thresholds 1990 2020 Level % 1990 2020 Level %

Panel A: Very strong heat stress

=>40°C 0.6% 0.6% 0.001pp 0.2% 0.00002%  0.00008%  0.00006pp 334.3%
>39°C 1.2% 1.2% 0.1pp 6.6% 0.0001% 0.0004% 0.0002pp 159.0%
>38°C 2.1% 2.3% 0.2pp 10.6% 0.0004% 0.002% 0.001pp 373.7%

Panel B: At least strong heat stress

>37°C 3.3% 3.8% 0.5pp 14.9% 0.002% 0.010% 0.008pp 476.0%
236°C 4.9% 5.8% 0.8pp 17.0% 0.006% 0.02% 0.0pp 291.4%
>35°C 6.9% 8.1% 1.2pp 17.7% 0.02% 0.05% 0.0pp 144.1%
>34°C 9.0% 10.6% 1.6pp 17.1% 0.06% 0.10% 0.0pp 67.0%
>33°C 11.5% 13.3% 1.8pp 15.8% 0.1% 0.2% 0.0pp 35.1%
>32°C 14.1% 16.2% 2.1pp 14.7% 0.3% 0.3% 0.0pp 14.1%
Panel C: At least moderate heat stress
>31°C 16.9% 19.3% 2.4pp 14.2% 0.5% 0.5% 0.0pp 42%
>30°C 20.0% 22.8% 2.8pp 14.1% 0.8% 0.8% 0.0pp 2.5%
>29°C 23.4% 26.9% 3.4pp 14.6% 1.2% 1.2% 0.0pp 3.0%
>28°C 27.5% 31.7% 4.3pp 15.5% 1.7% 1.7% 0.1pp 3.4%
>27°C 32.0% 37.0% 5.0pp 15.6% 2.4% 2.4% 0.1pp 2.8%
>26°C 36.9% 42.2% 5.3pp 14.5% 3.2% 3.3% 0.1pp 2.5%
Panel D: At least borderline thermal stress
>25°C 41.7% 47.0% 5.3pp 12.7% 42% 4.4% 0.1pp 2.7%
>24°C 46.3% 51.4% 5.1pp 11.0% 5.4% 5.6% 0.2pp 3.0%
=>23°C 50.6% 55.5% 4.9pp 9.7% 6.8% 7.1% 0.3pp 4.0%

Note: Columns 1, 2, 5, and 6 show the annual average share of time at or above various UTCI thresholds (UTCI tempera-
tures at > z ° C) for children in China (ages 0-14). Columns 3, 4, 7, and 8 show 1990 to 2020 changes in percentage points
(level) or percentage (%) of the average shares of time at or above UTCI heat thresholds. We compare UTCI temperatures
in 1990 and 2020 during April, May, June, July, August and September and during January, February, March, October,
November and December. We consider all 24 hours.
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D.2 Share of children at risk of heat exposure (SEIDT)

In Tables D.3 and D.4, we present additional details from the SEIDT statistics analysis of the
share of children at risk of exposure to heat stress thresholds, considering the dual thresholds
of intensity (UTCI temperature thresholds z °C) and duration (share of time-in-year thresholds
y%). Selected results are visualized in Figure 2. In each scenario, the share of children is
computed by aggregating the child population from locations (counties) that experienced a
particular combination of intensity and duration of exposures. In Table D.3, Panels A and
B present shares of children at risk in 1990 and 2020. In Table D.3, Panels A and B present
percentage points and percentage changes between 1990 and 2020.

We find that the shares of children experiencing long duration of moderate heat stress in-
creased substantially between 1990 and 2020. In particular, the share of children experiencing
at least 3 months of > 26 °C UTCI temperature increased by about one tenth from 31.1% to
34.8%, at least 3 months of > 28 °C UTCI temperature more than doubled from 7.5% to 17.4%,
and at least 3 months of > 30 °C increased by more than six times from 0.4% to 3.0%.

We also find a growing share of children experiencing at least strong and very strong heat
stress. In particular, the share of children experiencing > 34 °C UTCI temperature for at least
1.5 months increased by about six times from 0.5% to 3.4%, experiencing > 36 °C for at least
1 month increased by 23 times from less than 0.1% to 2.1%, and experiencing > 38 °C UTCI
temperature for at least 2 weeks increased by 18 times from less than 0.1% to 1.8%.

Finally, not only did more children experience high intensities and long duration of heat
exposure in 2020 compared to 1990, children experienced in 2020 new exposure combinations
at higher intensities and with longer duration beyond the 1990 frontier. Specifically, in 1990,
no children experienced at least 1 month of > 38 °C, at least 2 months of > 34 °C, or at least
4 months of > 30 °C UTCI heat exposures, but about 0.1%, 0.4%, and 0.1% of children experi-

enced these in 2020, respectively.
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Table D.3: Share of Children at Risk of Heat Stress, 1990 to 2020

Share of time in year thresholds and corresponding number of weeks

> 4%

> 8%

> 12%

> 16%

> 20%

> 24%

> 28%

>32%  >36%

UTCI thresholds 2 weeks

4 weeks

6 weeks

8 weeks

10 wks

12 wks

14 wks

16 wks 18 wks

Panel A: 1990

x% (cell) of children with at least y% (column) of time in year 1990 experiencing > z ° C (row) UTCI temperature.

Very strong heat stress
>38°C 0.1%

At least strong heat stress

>36°C 27.2%
>34°C 60.1%
>32°C 72.7%

At least moderate heat stress

>30°C 80.9%
>28°C 91.4%
>26°C 97.2%

0.1%
15.1%
52.1%

69.0%
77.5%
87.0%

At least borderline thermal stress

>24°C 98.8%

96.0%

0.5%
11.2%

43.7%

68.0%

76.6%

84.9%

1.4%

13.1%

44.6%

68.5%

76.6%

0.1%

4.5%

19.5%

54.4%

70.8%

0.4%
7.5%
31.1%

63.2%

4.5%
16.3%

44.2%

1.4% 0.1%
8.6% 6.7%
25.3% 13.9%

Panel B: 2020

x% (cell) of children with at least y% (column) of time in year 2020 experiencing > z ° C (row) UTCI temperature.

Very strong heat stress
>38°C 1.8%

At least strong heat stress

>36°C 32.4%
>34°C 66.6%
=>32°C 77.8%

At least moderate heat stress

>30°C 86.0%
>28°C 94.3%
>26°C 97.7%

0.1%

2.1%
20.1%
59.1%

75.6%
83.5%
91.9%

At least borderline thermal stress

=>24°C 98.7%

97.0%

0.2%
3.4%
18.6%

52.9%

74.6%

81.4%

89.7%

0.4%
6.1%

20.7%

53.6%

74.5%

81.2%

0.6%

10.4%

25.9%

59.7%

76.4%

3.0%
17.4%
34.8%

65.6%

0.5%
10.9%
24.9%

45.1%

0.1%

7.4% 3.8%
17.9% 13.7%
32.4% 23.3%

Note: Cells show the shares of Chinese children (ages 0-14) experiencing at least y% of their time in a year to > z°C
UTCI temperature. Shares of children are computed based on aggregating population shares from locations (counties)
experiencing the various combinations of heat stress duration (share of time) and intensity (UTCI temperature) thresholds.
For shares of time in a year, the correspondence between the share of time and the number of weeks is based on the fact that
the average of N weeks of time and ! months of time is approximately (N - 2)% of total share of time in a year. To enhance
contrast, values are rounded and cells with values less than 0.05% or 0.05pp are left empty. We consider all 24 hours and 12

months.
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Table D.4: Change in Share of Children at Risk of Exposure to Heat Stress Thresholds, 2020
1990

Minimal share of time in year thresholds and corresponding number of weeks

> 4% > 8% >12%  >16%  >20% @ >24%  >28% @ >=32%  >36%

UTCI thresholds 2 weeks 4 weeks 6 weeks 8 weeks 10 wks 12 wks 14 wks 16 wks 18 wks

Panel a: 2020% — 1990%

Increases in percentage points (cell) of children with at least y% (column) of time at > z °C (row) heat threshold

Very strong heat stress
>38°C 1.7pp 0.1pp

At least strong heat stress

=>36°C 5.2pp 2.0pp 0.2pp
>34°C 6.6pp 5.0pp 2.9pp 0.4pp
>32°C 5.1pp 6.9pp 7.4pp 4.7pp 0.5pp

At least moderate heat stress
=>30°C 5.2pp 6.5pp 9.2pp 7.6pp 6.0pp 2.6pp 0.5pp 0.1pp
>28°C 2.8pp 6.0pp 6.6pp 8.9pp 6.4pp 9.9pp 6.4pp 6.0pp 3.8pp
>26°C 0.6pp 5.0pp 4.8pp 6.0pp 5.2pp 3.7pp 8.6pp 9.3pp 7.0pp
At least borderline thermal stress

=>24°C -0.2pp 1.0pp 4.8pp 4.6pp 5.5pp 2.5pp 0.9pp 7.2pp 9.4pp

. 2020%—1990%
Panel b: 1990% 100

Percentage increases (cell) of children with at least y% (column) of time at > z °C (row) heat threshold

Very strong heat stress
=>38°C 1.8k%

At least strong heat stress

>36°C 19.2% 2.3k%
>34°C 10.9% 33.1% 606%
=32°C 7.0% 13.3% 66.3% 330% 792%

At least moderate heat stress

=>30°C 6.4% 9.4% 20.9% 58.5% 133% 654%
>28°C 3.1% 7.7% 9.7% 20.0% 32.9% 131% 141% 414% 5.2k%
=>26°C 0.6% 5.7% 6.3% 8.7% 9.6% 11.7% 52.9% 109% 106%

At least borderline thermal stress

>24°C -0.2% 1.0% 5.7% 6.0% 7.8% 3.9% 2.1% 28.5% 67.5%

Note: Cells show changes between 1990 and 2020 in percentage points (Panel A) and percentage (Panel B) of the shares of
Chinese children (ages 0-14) experiencing at least y% of their time in a year to > z °C UTCI temperature. Shares of children
are computed based on aggregating population shares from locations (counties) experiencing the various combinations of
heat stress duration (share of time) and intensity (UTCI temperature) thresholds. For shares of time in a year, the correspon-
dence between the share of time and the number of weeks is based on the fact that the average of N weeks of time and §
months of time is approximately (N - 2)% of total share of time in a year. To enhance contrast, values are rounded and cells
with values less than 0.05% or 0.05pp are left empty. We consider all 24 hours and 12 months.

39



D.3 Decomposing shifts in population and temperature distributions

In Tables D.5 and D.6, we provide details on the relative contributions of shifts in the child pop-
ulation distribution and the temperature distribution to overall changes in the average shares
of time of heat exposure for children. Selected results are visualized in Figure 3. Columns 1-3
of the tables follow from Table D.1. In columns 46 of the tables, we use the 1990 population
distribution jointly with the 2020 UTCI temperature distribution. In columns 7-9, we consider
exposures if the 2020 population distribution faced the 1990 UTCI temperature distribution.
Residual unexplained changes are attributed to population and temperature shift interactions.
Our STAC-based decomposition analysis is statistical in nature: We shift one distribution while
holding the other constant and do not model mechanisms of change.

In Table D.5, nationally, we show that shifts in the child population distribution between
1990 and 2020 account for 39% to 50% of the increases in the average shares of time of that
children are exposed to at least moderate or at least strong heat stress. In contrast, within the
Eastern and Northeastern regions, child population distribution shifts account for 5% to 38%
of the aggregate regional increases in average child heat exposure. The national results are
due to both within- and across-region shifts, whereas the regional results are attributed to only
within-region shifts.

In the last column of Tables D.5 we note the decreased importance of population effects in
explaining overall changes at higher UTCI thresholds. For example, nationally, the population-
shift contributions to overall changes decreased from 61% for at least borderline heat stress
(> 24°C) to 39% for the upper-bound of at least strong heat stress (> 36 °C); for the Eastern
region, the corresponding numbers decreased from 61% to 19%. These mean that increases
at higher heat exposure thresholds come more from increasing temperatures rather than from
populations moving to locations that were already hotter in 1990.

For completeness, in Table D.6, we also present decompositions of regional changes from
the Central and Western regions. Child population shifts also help to explain the relatively

limited aggregate heat exposures changes in these regions.
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Table D.5: Decompose Changes in Average Share of Time Exposed to Heat

Actual 2020 vs 1990 2020 UTCI with 1990 population 1990 UTCI with 2020 population
Share of time Changes  Share-time  Decompose changes  Share-time  Decompose changes
UTCI thresholds 1990 2020 A Prediction ~ Vs.1990  %of A Prediction Vs.1990 % of A

Panel A: National

At least strong heat stress

>36°C 2.5% 29%  0.43pp 2.7% 0.17pp 40% 2.7% 0.17pp 39%
>34°C 4.6% 54%  0.80pp 4.9% 0.35pp 45% 4.9% 0.33pp 42%
>32°C 7.2% 83%  1.06pp 7.6% 0.44pp 42% 7.7% 0.51pp 48%

At least moderate heat stress

>30°C 104%  118%  1.42pp 11.0% 0.60pp 42% 11.1% 0.69pp 49%
>28°C 14.6%  168%  2.16pp 15.5% 0.90pp 42% 15.6% 0.98pp 45%
>26°C 201%  228%  2.72pp 21.2% 1.08pp 40% 21.4% 1.35pp 50%

At least borderline thermal stress

>24°C 259%  286%  2.63pp 26.8% 0.88pp 33% 27.5% 1.60pp 61%

Panel B: Eastern region

At least strong heat stress

>36°C 2.7% 35%  0.85pp 3.3% 0.59pp 70% 2.9% 0.16pp 19%
>34°C 5.3% 6.6%  135pp 6.1% 0.89pp 66% 5.6% 0.31pp 23%
>32°C 8.4% 101%  1.70pp 9.5% 1.03pp 61% 8.9% 0.50pp 29%

At least moderate heat stress

=>30°C 12.1% 14.3% 2.26pp 13.4% 1.33pp 59% 12.8% 0.73pp 32%
>28°C 17.0% 20.7% 3.70pp 19.0% 2.02pp 55% 18.2% 1.18pp 32%
=>26°C 23.6% 28.1% 4.44pp 25.9% 2.27pp 51% 25.3% 1.69pp 38%

At least borderline thermal stress

>24°C 30.6%  342%  3.54pp 32.0% 1.36pp 38% 32.5% 1.87pp 53%

Panel C: Northeastern region

At least strong heat stress

>36°C 0.04% 03%  0.27pp 0.3% 0.24pp 89% 0.05% 0.01pp 5%
>34°C 0.3% 11%  0.79pp 1.% 0.72pp 91% 0.3% 0.05pp 6%
>32°C 1.1% 24%  1.22pp 2.3% 1.12pp 92% 1.3% 0.11pp 9%

At least moderate heat stress

>30°C 2.8% 41%  135pp 4.0% 1.23pp 91% 2.9% 0.17pp 13%
>28°C 5.0% 64%  139pp 6.2% 1.21pp 87% 5.2% 0.21pp 15%
>26°C 7.5% 89%  1.43pp 8.7% 1.16pp 81% 7.7% 0.24pp 16%

At least borderline thermal stress

=>24°C 10.4% 11.8% 1.45pp 11.4% 1.06pp 73% 10.7% 0.29pp 20%

Note: Columns (cols) 1-3 include actual annual average share of time that children in China (ages 0-14) are exposed to UTCI
temperatures at > z °C (same as cols 1-3 in Table D.1). In cols 4-6, the 1990 population distribution face the 2020 UTCI
temperature distribution. In cols 7-9, 2020 population face 1990 UTCI temperatures. Cols 4 and 7 show annual average share
of time that children are exposed to heat given decomposition scenarios. Cols 5 and 8 show differences between predictions
and 1990 actual average shares. Cols 6 and 9 show the share of column 3 actual changes that the predictions from cols 5 and 8
account for. We consider all 24 hours and 12 months.
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Table D.6: Decompose Changes in Average Share of Time Exposed to Heat

Actual 2020 vs 1990 2020 UTCI with 1990 population 1990 UTCI with 2020 population
Share of time Changes  Share-time  Decompose changes  Share-time  Decompose changes
UTCI thresholds 1990 2020 A Prediction ~ Vs.1990  %of A Prediction Vs.1990 % of A

Panel A: Central region

At least strong heat stress

>36°C 3.7% 37%  0.08pp 3.6% 0.03pp  -33% 3.7% 0.02pp 27%
>34°C 6.2% 65%  0.25pp 6.4% 0.11pp 45% 6.3% 0.03pp 14%
>32°C 9.3% 9.6%  0.30pp 9.4% 0.13pp 43% 9.3% 0.04pp 14%

At least moderate heat stress

>30°C 129%  133%  0.39pp 13.1% 0.21pp 53% 12.9% 0.04pp 10%
>28°C 17.6%  179%  0.38pp 17.8% 0.19pp 51% 17.6% 0.03pp 9%
>26°C 234%  236%  021pp 23.4% 0.04pp 22% 23.4% 0.04pp 21%

At least borderline thermal stress

>24°C 292%  29.6%  0.42pp 29.5% 0.27pp 64% 29.3% 0.08pp 19%

Panel B: Western region

At least strong heat stress

>36°C 1.7% 1.7%  -0.04pp 1.6% 0.12pp  284% 1.7% 0.05pp  -112%
>34°C 3.2% 33%  0.03pp 3.2% 0.09pp  -312% 3.4% 0.10pp  345%
>32°C 5.4% 54%  0.07pp 5.3% -0.09pp  -133% 5.5% 0.l6pp  247%

At least moderate heat stress

>30°C 8.0% 82%  0.19pp 8.1% 0.01pp 7% 8.2% 0.19pp 102%
>28°C 115%  121%  0.52pp 11.8% 0.29pp 55% 11.8% 0.24pp 47%
>26°C 162%  172%  1.06pp 16.9% 0.77pp 73% 16.5% 0.30pp 28%

At least borderline thermal stress

>24°C 215%  227%  1.13pp 22.4% 091pp 81% 21.8% 0.30pp 26%

Note: Columns (cols) 1-3 include actual annual average share of time that children in the Central and Western regions of China
(ages 0-14) are exposed to UTCI temperatures at > z °C (same as cols 1-3 in Table D.1). In cols 4-6, the 1990 population
distribution face the 2020 UTCI temperature distribution. In cols 7-9, 2020 population face 1990 UTCI temperatures. Cols 4
and 7 show annual average share of time that children are exposed to heat given decomposition scenarios. Cols 5 and 8 show
differences between predictions and 1990 actual average shares. Cols 6 and 9 show the share of column 3 actual changes that
the predictions from cols 5 and 8 account for. We consider all 24 hours and 12 months.
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D.4 Additional regional analysis

In Tables D.7 and D.8, we present details on region- and province-specific STAC child heat
exposure analysis. Selected regional results are visualized in Figure 4. Sub-national analyses
show which areas have experienced greater changes in heat exposures and also shed light on
whether aggregate changes are due to population shifts across provinces within regions or
across regions.P! Table D.7 presents results for at least strong and very strong heat stress and
Table D.8 focuses on at least moderate heat stress.

Between 1990 and 2020, while Central (C) and Western (W) heat exposures stagnated, chil-
dren in the heated Eastern (E) and colder Northeastern (NE) regions experienced increases
of 19%-35% and 19%-7.4k% in average heat exposure time. In 2020, the average E, NE, C,
and W region child experienced 10.1%, 2.4%, 9.5%, and 5.4% of her time under at least strong
(= 32°C) heat stress.

In 2020, we find that children in Hainan (E), Guangdong (E), Guangxi (W), Jiangxi (C),
and Fujian (E) had the highest heat exposures with 19.2%, 15.2%, 13.2%, 12.8%, and 11.8% of
their average shares of time exposed to at least strong heat stress (> 32 °C), which represented
respective increases of 17%, 20%, 8%, 16%, and 54% compared to 1990.

Lastly, we note the importance of considering both changes and levels. While Hebei (E),
Zhejiang (E) and NE provinces experienced similar percentage point increases in the average
share of heat exposure time, the percentage increases in the NE provinces are 3 to 15 times
larger due to lower starting levels. Additionally, Hebei (E) and Jiangsu (E) arrived at similar
levels of average child heat exposure in 2020 with a 17% increase and an 11% reduction in
average share of heat exposure time, respectively. Locations with similar levels or changes of
exposure might require different societal and physical adjustments depending on prior levels

and the magnitudes of recent changes.

D.1. Even when there are no changes in temperatures and within-region population distributions, average national
child exposure could increase due to shifts in child population to hotter regions.

43



Table D.7: Regional Average Share of Time at Risk of Exposure to at least Strong and Very
Strong Heat Stress Thresholds for Children (ages 0-14), 1990 to 2020

At least strong heat stress Very strong heat stress
> UTCI32°C > UTCI35°C > UTCI38°C
Share of time Changes Share of time Changes Share of time Changes
Location 1990 2020  Level % 1990 2020  Level % 1990 2020  Level %

Panel A: Regions

Eastern 84% 10.1% 1.7pp 20% 39% 50% 1lpp 29% 1.0% 1.4%  0.4pp 35%
Northeastern  1.1% 24%  1.2pp 106%  0.1% 0.6%  0.5pp 457%  0.0% 01% 0lpp 7.4k%
Central 9.3% 9.6%  0.3pp 3% 49% 51%  0.2pp 4% 1.7% 1.6% -0.1pp -3%
Western 54% 54%  0.1pp 1% 24% 24%  0.0pp 0% 07% 0.6% -01lpp -18%

Panel B: Eastern region

Beijing 29% 63% 34pp  117% 05% 28% 23pp  424% 0.0% 06% 06pp  1.2k%
Fujian 77% 11.8% 4lpp  54%  29% 56% 27pp 9%  05% 13% 09pp  175%
Guangdong ~ 127% 152% 25pp  20% 57% 75% 18pp  31%  13% 20% 07pp  56%
Hainan 163% 192% 28pp  17%  64% 100% 3.6pp  57%  09% 34% 24pp  261%
Hebei 65% 7.6% llpp  17%  29% 39% 10pp  34% 08% 10% 02pp  31%
Jiangsu 87% 7.8% -09pp -11% 47% 3.8% -09pp 20% 17% 13% -04pp  -25%
Shandong 6.8% 7.1% 04pp 6%  29% 33% Odpp 13% 05% 09% 03pp  58%
Shanghai 68% 61% -07pp  -10% 31% 27% -04pp -14% 1.0% 0.6% -O4pp  -40%
Tianjin 56% 73% 17pp  31% 21% 38% 17pp  84%  02% 09% 07pp  308%
Zhejiang 82% 92% 10pp  12%  4.6% 49% Odpp 8%  19% 16% -03pp -14%

Panel C: Northeastern region

Heilongjiang  0.6% 1.7%  1.1lpp 175%  0.0% 04% O4pp 1.6k% 0.0% 0.0% 0.0pp
Jilin 08% 21% 13pp 148% 0.0% 05% 05pp 2.7k% 0.0% 0.0% 0.0pp
Liaoning 19% 29%  1llpp 56%  03% 08% 0.6pp 216% 00% 01% O0lpp 4.5k%

Panel D: Central region

Anhui 101% 93% -08pp 7%  58% 50% -09pp -15% 22% 18% -04pp  -18%
Henan 89% 9.5%  0.6pp 7% 45% 5.1%  0.5pp 12%  14% 16%  02pp 13%
Hubei 102% 9.3%  -0.9pp 9% 55% 49% -06pp -10% 20% 13% -07pp -35%
Hunan 10.2% 10.6% 0.4pp 4% 50% 54%  0.4pp 7% 1.6% 1.6%  0.0pp 0%

Jiangxi 11.0% 128% 18pp  16%  61% 7.4% 12pp  20%  24% 29% 05pp  19%
Shanxi 26% 28% Olpp 5%  08% 07% -01pp -18%  02% 01% -0dpp  -53%

Panel E: Western region

Gansu 08% 0.8%  0.0pp -1% 0.1% 0.1%  0.0pp -17%  0.0% 0.0%  0.0pp -17%
Guangxi 12.3% 13.2% 1.0pp 8% 55% 6.6% 1llpp 20% 15% 1.4% -0.1pp 7%
Guizhou 28% 21% -07pp  -26% 07% 03% -04pp -53% 0.1% 0.0%  0.0pp -54%
Neimenggu 09% 20% 1lpp 116% 01% 0.6% 04pp  29% 0.0% 01% Olpp  268%
Ningxia 21% 28%  0.7pp 31%  07% 09%  0.2pp 35%  0.1% 0.1%  0.0pp 17%
Qinghai 0.0% 0.0%  0.0pp 0.0% 0.0%  0.0pp 0.0% 0.0%  0.0pp

Continued on next page
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Table D.7: Regional Average Share of Time at Risk of Exposure to at least Strong and Very
Strong Heat Stress Thresholds for Children (ages 0-14), 1990 to 2020

At least strong heat stress Very strong heat stress
> UTCI32°C > UTCI35°C > UTCI38°C
Share of time Changes Share of time Changes Share of time Changes

Location 1990 2020  Level % 1990 2020  Level % 1990 2020  Level %

Shaanxi 4.6% 43% -04pp -8% 19% 1.5% -04pp -23% 0.6% 02% -03pp  -58%

Sichuan 80% 7.4% -0.7pp -8% 42% 3.6% -06pp -14% 13% 1.0% -03pp -23%

Xinjiang 43% 52%  09pp 22%  2.0% 24%  04pp 19%  07% 0.7%  0.0pp 0%

Xizang 0.0% 0.0%  0.0pp 0.0% 0.0%  0.0pp 0.0% 0.0%  0.0pp

Yunnan 09% 12%  0.3pp 33% 01% 0.1%  0.0pp 53% 0.0% 0.0%  0.0pp -7%

Note: We present similar statistics as in Table D.1, but now compute exposures separately for the four economic regions and
provincial-level administrative units in China. Columns (cols) 1-3 and 4-6 focus on at least strong UTCI heat exposure at
> 32°C and > 35 °C, respectively. Cols 7-9 focus on very strong UTCI heat exposure at > 38 °C. Cols 1 and 2, 5 and 6,
and 9 and 10 show the annual average share of time at or above various UTCI thresholds (UTCI temperatures at > z ° C) for
children in China (ages 0-14). Cols 3 and 4, 7 and 8, and 11 and 12 show 1990 to 2020 changes in percentage points (level) or
percentage (%) of the average shares of time at or above UTCI heat thresholds. Cells are empty for percentage changes when
the denominator is equal to zero. We consider all 24 hours and 12 months.

Table D.8: Regional Average Share of Time at Risk of Exposure to at Least Moderate Heat
Stress Thresholds for Children (ages 0-14), 1990 to 2020

At least borderline thermal stress At least moderate heat stress
> UTCI23°C > UTCI26°C > UTCI29°C
Share of time Changes Share of time Changes Share of time Changes
Location 1990 2020  Level Y% 1990 2020  Level Y% 1990 2020  Level Y

Panel A: Regions

Eastern 33.8% 37.0% 3.2pp 9% 23.6% 28.1% 4.4pp 19%  14.3% 17.1% 2.8pp 20%
Northeastern  12.0% 13.5% 1.5pp 13% 75% 89%  ld4pp 19%  38% 52%  1l4pp 36%
Central 32.0% 32.7% 0.7pp 2% 23.4% 23.6% 0.2pp 1% 151% 15.5% 0.4pp 3%
Western 24.3% 25.3% 1.0pp 4% 16.2% 17.2% 1.1pp 7% 9.7%  10.0% 0.3pp 3%

Panel B: Eastern region

Beijing 19.0% 232% 43pp  23%  121% 162% 4lpp  34% 7.0% 107% 37pp  53%
Fujian 389% 45.6% 6.7pp  17%  24.6% 325% 79pp 2%  141% 190% 49pp  35%
Guangdong ~ 51.9% 555% 37pp 7%  375% 453% 7.8pp  21% 21.6% 263% 47pp = 22%
Hainan 635% 634% 00pp 0%  47.1% 518% 47pp 10% 27.7% 315% 39pp  14%
Hebei 244% 251% 07pp 3%  170% 180% 10pp 6%  108% 123% 15pp  14%
Jiangsu 30.5% 29.7% -0.8pp 3%  225% 215% -10pp  -4%  143% 137% -0.6pp  -4%
Shandong 26.7% 253% -l4pp 5%  18.1% 182% 00pp 0%  114% 121% 07pp 6%
Shanghai 27.9% 29.7% 18pp 7%  197% 207% 10pp 5%  123% 113% -1.0pp -8%
Tianjin 235% 252% 17pp 7%  158% 17.8% 19pp 12% 97% 121% 23pp  24%
Zhejiang 334% 360% 26pp 8%  226% 265% 39pp 17%  13.6% 154% 18pp  13%

Continued on next page
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Table D.8: Regional Average Share of Time at Risk of Exposure to at Least Moderate Heat
Stress Thresholds for Children (ages 0-14), 1990 to 2020

At least borderline thermal stress At least moderate heat stress
> UTCI23°C > UTCI 26°C > UTCI29°C
Share of time Changes Share of time Changes Share of time Changes
Location 1990 2020  Level Y% 1990 2020  Level Yo 1990 2020  Level Y

Panel C: Northeastern region

Heilongjiang ~ 10.2% 112% 10pp 9%  63% 7.3% 09pp 15% 29% 40% llpp  38%
Jilin 11.1% 122% 1lpp  10%  69% 85% 15pp  22% 34% 49% 15pp  45%
Liaoning 144% 158% 1l4pp  10%  91% 103% 13pp 14% 51% 62% 1llpp  21%

Panel D: Central region

Anhui 327% 323% -04pp  -1%  252% 234% -18pp 7%  162% 155% -0.7pp  -5%
Henan 29.6% 294% -02pp 1%  215% 21.1% -04pp 2%  139% 145% O.6pp 4%
Hubei 333% 339% 0.6pp 2%  251% 242% -09pp -3%  167% 154% -13pp  -8%
Hunan 36.2% 37.6% ldpp 4%  257% 268% 1lpp 4%  165% 17.1% 05pp 3%
Jiangxi 388% 41.8% 30pp 8%  281% 317% 36pp 13% 17.9% 209% 3.dpp  17%
Shanxi 16.1% 16.6% 05pp 3%  10.6% 11.1% O.6pp 5%  60% 6.6% 05pp 9%

Panel E: Western region

Gansu 11.1% 10.7% -0.4pp  -3% 6.6% 64% -02pp 3%  3.0% 29%  0.0pp -1%
Guangxi 47.5% 492% 1.7pp 4% 33.3% 36.8% 3.4pp 10%  20.2% 21.4% 1.2pp 6%
Guizhou 195% 19.4% -0.1pp 0% 122% 11.6% -06pp 5% 7.0% 61% -09pp -13%
Neimenggu 9.9% 12.0% 2.1pp 21% 6.0% 82%  22pp 36%  29% 47%  1.8pp 62%
Ningxia 12.9% 14.1% 1.1pp 9% 88% 9.6%  0.8pp 10%  50% 57%  0.7pp 13%
Qinghai 49% 38% -llpp -23% 14% 1.0% -04pp -30% 01% 0.0% -0lpp -71%
Shaanxi 19.5% 19.3% -02pp  -1% 13.3% 13.1% -03pp 2%  86% 82% -03pp 4%
Sichuan 28.5% 29.4% 0.8pp 3% 19.3% 19.7% 0.4pp 2% 125% 122% -03pp  -3%
Xinjiang 16.3% 18.0% 1.6pp 10% 11.4% 13.1% 1.7pp 14%  74% 88%  ldpp 18%
Xizang 13% 14% 0.ldpp 5% 01% 01% 0.0pp -32% 0.0% 0.0% 00pp 159%
Yunnan 19.2% 21.0% 1.8pp 9% 11.0% 12.3% 1.3pp 12%  4.6% 53%  0.8pp 17%

Note: We present similar statistics as in Table D.1, but now compute exposures separately for the four economic regions and
provincial-level administrative units in China. Columns (cols) 4-6 and 7-9 focus on at least moderate UTCI heat exposure at
> 26 °C and > 29 °C, respectively. Cols 1-3 provide UTCI heat exposure at > 23 °C—UTCI 23 °C is a temperature level
that is just below the UTCI 25 ° C threshold for moderate heat stress. Cols 1 and 2, 5 and 6, and 9 and 10 show the annual
average share of time at or above various UTCI thresholds (UTCI temperatures at > z ° C) for children in China (ages 0-14).
Cols 3 and 4, 7 and 8, and 11 and 12 show 1990 to 2020 changes in percentage points (level) or percentage (%) of the average
shares of time at or above UTCI heat thresholds. Cells are empty for percentage changes when the denominator is equal to
zero. We consider all 24 hours and 12 months.
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D.5 Main and Additional Results Replication

Code and results for the additional results in this section as well as in the main text of the paper
are accessible at: https://github.com/Climatelnequality /PrjCEC.
Code for generating the statistics shown in tables and figures are stored in the R-script

folder, and code and output for visualizaing and tabularization are stored in the res folder.

1. Section D.1 and main text Figure 1 results and code:
¢ Generate statistics: R-script/run_la_mean_child_all24,
R-script/run_1b_mean_child_6t22, and R-script/run_lc_mean_child_seasons
¢ Tabulate and visualize: R-script/tabfig_1_mean_child

¢ Tables and figures: res/res_mean_child
2. Section D.2 and main text Figure 2 results and code:

* Generate statistics: R-script/run_2a_atrisk_child
¢ Tabulate and visualize: R-script/tabfig 2_at_risk

¢ Tables and figures: res/res_atrisk
3. Section D.3 and main text Figure 3 results and code:

¢ Generate statistics: R-script/run_3a_decompose
and R-script/run_3b_decompose_regional

¢ Tabulate and visualize: R-script/tabfig_3_decompose

¢ Tables and figures: res/res_decompose
4. Section D.4 and main text Figure 4 results and code:

* Generate statistics: R-script/run_4a_mean_child_all24_by_region and
R-script/run_4b_mean_child_all24_by_province
¢ Tabulate and visualize: R-script/tabfig_4_region_prov

¢ Tables and figures: res/res_region_prov
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